Biopolym. Cell. 2011; 27(6):436-441.
Structure and Function of Biopolymers
Molecular cloning, sequencing and expression in Escherichia coli cells Thermus thermophilus leucyl-tRNA synthetase
1, 2Yaremchuk A. D., 1Kovalenko O. P., 1Gudzera O. I., 1, 2Tukalo M. A.
  1. State Key Laboratory of Molecular and Cellular Biology
    Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. EMBL
    6, rue Jules Horowitz, 38042 Grenoble Cedex 9, France

Abstract

Aim. Cloning and sequencing of the T. thermophilus leucyl-tRNA synthetase (LeuRSTT) followed by the creation of genetically engineered construct for protein expression in E.coli cells and its purification. Methods. Searching for the LeuRSTT gene was performed by Southern blot hybridization with chromosomal DNA, where digoxigenin-labeled PCR fragments of DNA were used as probes. Results. The gene of T. thermophilus HB27 leucyl-tRNA synthetase was cloned and sequenced. The open reading frame encodes a polypeptide chain of 878 amino acid residues in length (molecular mass 101 kDa). Comparison of the amino acid sequence of T. thermophilus LeuRS with that of the enzymes from other organisms showed that LeuRSTT was a part of the group of similar enzymes of prokaryotes, formed by the proteins of protobacteriae, rickettsia and mitochondria of eukaryotes. The resulting phylogenetic tree of LeuRSs reveals dichotomous branching into two lines: prokaryotic/eukaryotic mitochondrial and arhaeal/eukaryotic cytosolic proteins. Differences between prokaryotic and arhaeal branches of the LeuRSs phylogenetic tree are primarily due to the structure of two domains of the enzyme – the editing and the C-terminal. T. thermophilus LeuRS was expressed in E. coli cells by cloning the corresponding gene into pET29b vector. Conclusions. The cloned T. thermophilus leuS gene and expressed recombinant protein will be used for structural and functional studies on LeuRSTT, including X-ray analysis of the enzyme and its mutant forms in complex with different substrates.
Keywords: aminoacyl-tRNA synthetases, leucyl-tRNA synthetaseThermus thermophilus, phylogenetic tree

References

[1] Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs Nature 1990 347, N 6289 P. 203–206.
[2] Cusack S., Berthet-Colominas C., Hartlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 C Nature 1990 347, N 6290 P. 249–255.
[3] Cusack S., Yaremchuk A., Tukalo M. The 2 C crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue EMBO J 2000 19, N 10 P. 2351–2361.
[4] Nureki O., Vassylyev D. G., Tateno M., Shimada A., Nakama T., Fukai S., Konno M., Hendrickson T. L., Schimmel P., Yokoyama S. Enzyme structure with two catalytic sites for double-sieve selection of substrate Science 1998 280, N 5363 P. 578–582.
[5] Biou V., Yaremchuk A., Tukalo M., Cusack S. The 2.9 C crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser) Science 1994 263, N 5152 P. 1404–1410.
[6] Yaremchuk A., Kriklivyi I., Tukalo M., Cusack S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition EMBO J 2002 21, N 14 P. 3829–3840.
[7] Tukalo M., Yaremchuk A., Fukunaga R., Yokoyama S., Cusack S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation Nat. Struct. Mol. Biol 2005 12, N 10 P. 923–930.
[8] Asahara H., Himeno H., Tamura K., Hasegawa T., Watanabe K., Shimizu M. Recognition nucleotides of Escherichia coli tRNALeu and its elements facilitating discrimination from tRNASer and tRNATyr J. Mol. Biol 1993 231, N 2 P. 219–229.
[9] Yaremchuk A., Cusack S., Gudzera O., Grotli M., Tukalo M. Crystallization and preliminary crystallographic analysis of Thermus thermophilus leucyl-tRNA synthetase and its complexes with leucine and a non-hydrolysable leucyl-adenylate analogue Acta Crystallogr. D. Biol. Crystallogr 2000 56, Pt 5 P. 667–669.
[10] Marmur J. A. A procedure for the isolation of deoxyribonucleic acid from micro-organisms J. Mol. Biol 1961 3, N 2 P. 208–218.
[11] Yaremchuk A. D., Gudzera O. I., Egorova S. P., Rozhko D. I., Kriklivy I. A., Tukalo M. A. Leucyl-tRNA synthetase from Thermus thermophilus. Purification and some properties of the crystallizing enzyme Biopolym. Cell 2001 17, N 3 P. 216–220.
[12] Gudzera O. I., Yaremchuk A. D., Tukalo M. A. Functional role of C-terminal domain of Thermus thermophilus leucyl-tRNA synthetase Biopolym. Cell 2010 26, N 6 P. 478–485.
[13] Hsu J. L., Rho S. B., Vannella K. M., Martinis S. A. Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles J. Biol. Chem 2006 281, N 32 P. 23075–23082.
[14] Fukunaga R., Yokoyama S. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyltRNA(Ile) Biochemistry 2007 46, N 17 P. 4985–4996.
[15] Fukunaga R., Yokoyama S. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation J. Mol. Biol 2005 346, N 1 P. 57–71.
[16] Lincecum T. L. Jr., Tukalo M., Yaremchuk A., Mursinna R. S., Williams A. M., Sproat B. S., Van Den Eynde W., Link A., Van Calenbergh S., Grotli M., Martinis S. A., Cusack S. Structural and mechanistic basis of preand posttransfer editing by leucyltRNA synthetase Mol. Cell 2003 11, N 4 P. 951–963.
[17] Rock F. L., Mao W., Yaremchuk A., Tukalo M., Crepin T., Zhou H., Zhang Y. K., Hernandez V., Akama T., Baker S. J., Plattner J. J., Shapiro L., Martinis S. A., Benkovic S. J., Cusack S., Alley M. R. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site Science 2007 316, N 5832 P. 1759–1761.