Biopolym. Cell. 2011; 27(5):359-363.
FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation
1Dmitriev P. V., 1Barat A. L., 1Cochet E., 1Ogryzko V. V., 2Laoudj-Chenivesse D., 1Lipinski M., 1Vassetzky Y. S.
  1. CNRS UMR 8126, Universit Paris-Sud 11, Institut Gustave Roussy
    114, rue Edouard Vaillant, Villejuif, France, 94805
  2. Inserm U1046, Universite Montpellier 1, Universite Montpellier 2
    371 Avenue du Doyen G. Giraud, Montpellier, France, 34295

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes.
Keywords: FSHD, vimentin, myogenic differentiation, proteomics

References

[1] Dmitriev P., Lipinski M., Vassetzky Y. S. Pearls in the junk: dissecting the molecular pathogenesis of facioscapulohumeral muscular dystrophy Neuromuscul. Disord 2009 19, N 1 P. 17–20.
[2] van Deutekom J. C., Wijmenga C., van Tienhoven E. A., Gruter A. M., Hewitt J. E., Padberg G. W., van Ommen G. J., Hofker M. H., Frants R. R. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit Hum. Mol. Genet 1993 2, N 12 P. 2037–2042.
[3] Petrov A., Laoudj D., Vasetskii E. Genetics and epigenetics of facio-scapulohumeral progressive (Landouzy-Dejerine) muscular dystrophy Genetika 2003 39, N 2 P. 202–206.
[4] Petrov A., Pirozhkova I., Carnac G., Laoudj D., Lipinski M., Vassetzky Y. S. Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts Proc. Natl. Acad. Sci. USA 2006 103, N 18 P. 6982–6987.
[5] Petrov A., Allinne J., Pirozhkova I., Laoudj D., Lipinski M., Vassetzky Y. S. A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy Genome Res 2008 18, N 1 P. 39–45.
[6] Celegato B., Capitanio D., Pescatori M., Romualdi C., Pacchioni B., Cagnin S., Vigano A., Colantoni L., Begum S., Ricci E., Wait R., Lanfranchi G., Gelfi C. Parallel protein and transcript profiles of FSHD patient muscles correlate to the D4Z4 arrangement and reveal a common impairment of slow to fast fibre differentiation and a general deregulation of MyoD-dependent genes Proteomics 2006 6, N 19 P. 5303–5321.
[7] Winokur S. T., Chen Y. W., Masny P. S., Martin J. H., Ehmsen J. T., Tapscott S. J., van der Maarel S. M., Hayashi Y., Flanigan K. M. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation Hum. Mol. Genet 2003 12, N 22 P. 2895–2907.
[8] Laoudj-Chenivesse D., Carnac G., Bisbal C., Hugon G., Bouillot S., Desnuelle C., Vassetzky Y., Fernandez A. Increased levels of adenine nucleotide translocator 1 protein and response to oxidative stress are early events in facioscapulohumeral muscular dystrophy muscle J. Mol. Med. (Berl) 2005 83, N 3 P. 216–224.
[9] Winokur S. T., Barrett K., Martin J. H., Forrester J. R., Simon M., Tawil R., Chung S. A., Masny P. S., Figlewicz D. A. Facioscapulohumeral muscular dystrophy (FSHD) myoblasts demonstrate increased susceptibility to oxidative stress Neuromuscul. Disord 2003 13, N 4 P. 322–333.
[10] Davies K. E., Nowak K. J. Molecular mechanisms of muscular dystrophies: old and new players Nat. Rev. Mol. Cell Biol 2006 7, N 10 P. 762–773.
[11] Barro M., Carnac G., Flavier S., Mercier J., Vassetzky Y., Laoudj-Chenivesse D. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects J. Cell Mol. Med 2010 14, N 1–2 P. 275–289.
[12] Yu J., de Belle I., Liang H., Adamson E. D. Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses Mol. Cell 2004 15, N 1 P. 83–94.
[13] Saade E., Mechold U., Kulyyassov A., Vertut D., Lipinski M., Ogryzko V. Analysis of interaction partners of H4 histone by a new proteomics approach Proteomics 2009 9, N 21 P. 4934–4943.
[14] Duprey P., Paulin D. What can be learned from intermediate filament gene regulation in the mouse embryo Int. J. Dev. Biol 1995 39, N 3 P. 443–457.
[15] Sarnat H. B. Vimentin and desmin in maturing skeletal muscle and developmental myopathies Neurology 1992 42, N 8 P. 1616–1624.
[16] Gallanti A., Prelle A., Moggio M., Ciscato P., Checcarelli N., Sciacco M., Comini A., Scarlato G. Desmin and vimentin as markers of regeneration in muscle diseases Acta Neuropathol 1992 85, N 1 P. 88–92.
[17] van der Ven P. F., Schaart G., Jap P. H., Sengers R. C., Stadhouders A. M., Ramaekers F. C. Differentiation of human skeletal muscle cells in culture: maturation as indicated by titin and desmin striation Cell Tissue Res 1992 270, N 1 P. 189– 198.
[18] Salmon M., Zehner Z. E. The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis Differentiation 2009 77, N 5 P. 492–504.
[19] Wieczorek E., Lin Z., Perkins E. B., Law D. J., Merchant J. L., Zehner Z. E. The zinc finger repressor, ZBP-89, binds to the silencer element of the human vimentin gene and complexes with the transcriptional activator, Sp1 J. Biol. Chem 2000 275, N 17 P. 12879–12888.
[20] Salvetti A., Lilienbaum A., Li Z., Paulin D., Gazzolo L. Identification of a negative element in the human vimentin promoter: modulation by the human T-cell leukemia virus type I Tax protein Mol. Cell Biol 1993 13, N 1 P. 89–97.
[21] Macaione V., Aguennouz M., Rodolico C., Mazzeo A., Patti A., Cannistraci E., Colantone L., Di Giorgio R. M., De Luca G., Vita G. RAGE-NF-kappaB pathway activation in response to oxidative stress in facioscapulohumeral muscular dystrophy Acta Neurol. Scand 2007 115, N 2 P. 115–121.
[22] Schultheiss T., Lin Z. X., Ishikawa H., Zamir I., Stoeckert C. J., Holtzer H. Desmin/vimentin intermediate filaments are dispensable for many aspects of myogenesis J. Cell Biol 1991 114, N 5 P. 953–966.
[23] Pieper F. R., Raats J. M., Schaart G., Dunia I., van der Kemp A., Benedetti E. L., Ramaekers F. C., Bloemendal H. Disruption of vimentin intermediate filaments in transgenic mice by expression of a dominant negative mutant desmin subunit Eur. J. Cell Biol 1995 68, N 4 P. 355–368.
[24] Capetanaki Y., Starnes S., Smith S. Expression of the chicken vimentin gene in transgenic mice: efficient assembly of the avian protein into the cytoskeleton Proc. Natl. Acad. Sci. USA 1989 86, N 13 P. 4882–4886.
[25] Bornemann A., Schmalbruch H. Desmin and vimentin in regenerating muscles Muscle Nerve 1992 15, N 1 P. 14–20.