Biopolym. Cell. 2011; 27(5):339-342.
Brain plasticity of rats exposed to prenatal immobilization stress
1Abrahamyan S. S., 2Meliksetyan I. B., 1Sahakyan I. K., 1Tumasyan N. V., 3Badalyan B. Yu., 1Galoyan A. A.
  1. H. Buniatian Institute of Biochemistry, NAS of Republic of Armenia
    5/1, P. Sevak Str., Yerevan, Republic of Armenia, 0014
  2. L. A. Orbeli Institute of Physiology, NAS of Republic of Armenia
    22, Orbeli Str., Yerevan, Republic of Armenia, 0028
  3. Yerevan State Medical University named after Mkhitar Heratsi, Ministry of Education and Science of Republic of Armenia
    2, Koryun Str., Yerevan, Republic of Armenia, 0025

Abstract

Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO) stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (aka Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein) have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.
Keywords: rat brain plasticity, prenatal immobilization stress, GFAP-, nestin-, stem cells-, PRP-1-immuno-reactive structures

References

[1] Markossian K. A., Gurvitz B. Ya., Galoyan A. A. Isolation and chemical identification of new peptides from neurisecretory granules of hypothalamus Neurokhimiya 1999 16, N 1 P. 22–25.
[2] Simonian G. M., Nersissian A. K., Simonian R. M., Babayan M. A., Simonian N. A., Galoyan A. A. Antitumor and antistressor effect of hypothalamic PRP-1 in sarcoma-45 in vivo: the possible biochemical mechanisms Neurokhimiya 2005 22, N 2 P. 125–130.
[3] Galoian K, Scully S, Galoyan A. Myc-oncogene inactivating effect by proline rich polypeptide (PRP-1) in chondrosarcoma JJ012 cells Neurochem. Res 2009 34, N 2 P. 379–385.
[4] Aprikian V. S., Galoyan A. A. Hypothalamic polypeptide preserves from death mices infected with gram-negative bacteria Neurokhimiya 2000 17, N 1 P. 60–63.
[5] Galoyan A. A., Aprikyan V. S. A new hypothalamic polypeptide is a regulator of myelopoiesis Neurochem. Res 2002 27, N 4 P. 305–312.
[6] Pat. No. 1696 A2, Pat. No. P20050113 Republic of Armenia. A method for treatment and/or prevention of leucosis at the cattle / A. A. Galoyan, A. A. Shirvanyan Issued on 15.03.2006.
[7] Abrahamyan S. S., Sarkissian J. S., Meliksetyan I. B., Galoyan A. A. Survival of trauma-injured neurons in rat brain by treatment with proline-rich peptide (PRP-1): an immunohistochemical study Neurochem Res 2004 29, N 4 P. 695–708.
[8] Sarkissian J. S., Galoyan A. A., Chavushyan V. A., Meliksetyan I. B., Abrahamyan S. S., Avakyan Z. E., Aloyan M. L., Voskanyan A. V., Mkrtchyan O. A. Morpfofunctional research of protective actions of snake poison Naja Naja Oxiana at the lateral hemisection of spinal cord Neurokhimiya 2008 23, N 4 P. 362–376.
[9] Holtzer H. Cell lineages, stem cells and the «quantal» cell cycle concept Stem cells and tissue homeostasis / Eds B. I. Lord, C. S. Potten, R. J. Cole New York: Cambridge Univ. Press, 1978 P. 1–28.
[10] Leblond C. P. Classification of cell populations on the basis of their proliferative behavior Natl. Cancer Inst. Monogr 1964 14 P. 119–150.
[11] Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures J. Histochem. Cytochem 1981 29, N 4 P. 577–580.
[12] Meliksetyan I. B. Detection of Ca2+-dependent acid phosphatase activity in rat brain cellular structures Morphologia (St. Petersburg) 2007 131, N 2:77–80.
[13] Ambrosius X. Obtaining of antisera from different animals Immu nological methods / Ed. G. Frimel Moscow: Medicina, 1987 P. 14–15.
[14] Pelletier L., Angonin R., Regnard J., Fellmann D., Charbord P. Human bone marrow angiogenesis: in vitro modulation by substance P and neurokinin A Br. J. Haematol 2002 119, N 4 P. 1083–1089.
[15] Hess D. C., Abe T., Hill W. D., Studdard A. M., Carothers J., Masuya M., Fleming P. A., Drake C. J., Ogawa M. Hematopoietic origin of microglial and perivascular cells in brain Exp. Neurol 2004 186, N 2 P. 134–144.
[16] Ponti G., Peretto P., Bonfanti L. Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits PLoS One 2008 3, N 6 P. e2366.
[17] Gage F. H., Coates P. W., Palmer T. D., Kuhn H. G., Fisher L. J., Suhonen J. O., Peterson D. A., Suhr S. T., Ray J. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain Proc. Natl Acad. Sci. USA 1995 92, N 25 P. 11879– 11883.
[18] Canoll P. D., Musacchio J. M., Hardy R., Reynolds R., Marchionni M. A., Salzer J. L. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors Neuron 1996 17, N 2 P. 229–243.
[19] McKeon R. J., Hoke A., Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars Exp. Neurol 1995 136, N 1 P. 32–43.
[20] Powell E. M., Meiners S., DiProspero N. A., Geller H. M. Mechanisms of astrocyte-directed neurite guidance Cell Tissue Res 1997 290, N 2 P. 385–393.
[21] Zuo J., Neubauer D., Dyess K., Ferguson T. A., Muir D. Degradation of chondroitin sulfate proteoglycan enhances the neuritepromoting potential of spinal cord tissue Exp. Neurol 1998 154, N 2 P. 654–662.
[22] Keirstead H. S., Dyer J. K., Sholomenko G. N., McGraw J., Delaney K. R., Steeves J. D. Axonal regeneration and physiological activity following transection and immunological disruption of myelin within the hatchling chick spinal cord J. Neurosci 1995 15, N 10 P. 6963–6974.
[23] Kruger S., Sievers J., Hansen C., Sadler M., Berry M. Three morphologically distinct types of interface develop between adult host and fetal brain transplants: implications for scar formation in the adult central nervous system J. Comp. Neurol 1986 249, N 1 P. 103–116.
[24] Abrahamyan S. S., Meliksetyan I. B., Chavushyan V. A., Aloyan M. L., Sarkissian J. S. Protective action of snake venom Naja naja oxiana at spinal cord hemisection Ideggyogy Sz 2007 60, N 3–4 P. 148–153.
[25] Grove J. E., Bruscia E., Krause D. S. Plasticity of bone marrowderived stem cells Stem. Cells 2004 22, N 4 P. 487–500.
[26] Aimone J. B., Jessberger S., Gage F. H. Adult neurogenesis Scholarpedia 2007 2, N 2 P. 2100.
[27] Jiang Y., Jahagirdar B. N., Reinhardt R. L., Schwartz R. E., Keene C. D., Ortiz-Gonzalez X. R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W. C., Largaespada D. A., Verfaillie C. M. Pluripotency of mesenchymal stem cells derived from adult marrow Nature 2002 418, N 6893 P. 41–49.
[28] Lu P., Blesch A., Tuszynski M. H. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res 2004 77, N 2 P. 174–191.
[29] Vogel W., Grunebach F., Messam C. A., Kanz L., Brugger W., Buhring H. J. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells Haematologica 2003 88, N 2 P. 126–133.
[30] Bezirganyan K. B., Galoyan A. A., Davtyan T. K. Hypothalamic proline-rich polypeptide enhances human CD34+ progenitor cell differentiation into erythroid and granulomonocytic linea ges Neurochem. J 2008 2, N 4 P. 305,
[31] Galoyan A. A., Korochkin L. I., Rybalkina E. J., Pavlova G. V., Saburina I. N., Zaraiski E. I., Galoyan N. A., Davtyan T. K., Bezirganyan K. B., Revishchin A. V. Hypothalamic proline-rich polypeptide enhances bone marrow colony-forming cell proliferation and stromal progenitor cell differentiation Cell Transplant 2008 17, N 9 P. 1061–1066.