Biopolym. Cell. 2011; 27(3):193-198.
Structure and Function of Biopolymers
Inhibition of sodium-dependent phosphate transporter NaPi2b function with MX35 antibody
1Gryshkova V. S., 1Filonenko V. V., 1Kiyamova R. G.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Sodium-dependent phosphate transporter NaPi2b is involved in transport of inorganic phosphate and the maintenance of phosphate homeostasis in human body. NaPi2b was recently identified as a marker of ovarian cancer, termed MX35. Monoclonal antibody (mAb) against transporter NaPi2b, called MX35, demonstrated therapeutic efficacy in radioimmunotherapy of patients with ovarian cancer. Aim. The present experiments explored whether MX35 antibody can affect function of NaPi2b to transport inorganic phosphate ions in cellular models. Methods. HEK293 cells stably expressing wild type NaPi2b and mutant NaPi2b_T330V, which could not be recognized by MX35 antibody, were incubated with MX35 antibody and analyzed by phosphate uptake assay. Results. Cells expressing wild type NaPi2b showed reduced phosphate uptake after incubation with MX35 antibody at concentration 50 µg/ml. No significant changes in phosphate transport were detected for cells expressing NaPi2b_T330V at the same experimental conditions. Conclusions. Our results demonstrate 1,8-fold decrease of NaPi2b-mediated phosphate transport in HEK293 cells stably expressing wild type NaPi2b after MX35 antibody application, which can be considered as a specific inhibitor of NaPi2b function.
Keywords: NaPi2b, MX35 antibody

References

[1] Xu H., Bai L., Collins J. F., Ghishan F. K. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+–Pi) transporter (SLC34A2) Genomics 1999 62, N 2:281–284.
[2] Hilfiker H., Hattenhauer O., Traebert M., Forster I., Murer H., Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine Proc. Natl Acad. Sci. USA 1998 95, N 24 P. 14564–14569.
[3] Virkki L. V., Biber J., Murer H., Forster I. C. Phosphate transporters: a tale of two solute carrier families Am. J. Physiol. Renal. Physiol 2007 293, N 3 P. F643–F654.
[4] Sabbagh Y., O'Brien S. P., Song W., Boulanger J. H., Stockmann A., Arbeeny C., Schiavi S. C. Intestinal Npt2b plays a major role in phosphate absorption and homeostasis J. Am. Soc. Nephrol 2009 20, N 11 P. 2348–2358.
[5] Shibasaki Y., Etoh N., Hayasaka M., Takahashi M. O., Kakitani M., Yamashita T., Tomizuka K., Hanaoka K. Targeted deletion of the type IIb Na(+)-dependent Pi-co-transporter, NaPi-IIb, results in early embryonic lethality Biochem. Biophys. Res. Commun 2009 381, N 4 P. 482–486.
[6] Homann V., Rosin-Steiner S., Stratmann T., Arnold W. H., Gaengler P., Kinne R. K. Sodium-phosphate cotransporter in human salivary glands: molecular evidence for the involvement of NPT2b in acinar phosphate secretion and ductal phosphate reabsorption Arch. Oral. Biol 2005 50, N 9 P. 759–768.
[7] Corut A., Senyigit A., Ugur S. A., Altin S., Ozcelik U., Calisir H., Yildirim Z., Gocmen A., Tolun A. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis Am. J. Hum. Genet 2006 79, N 4 P. 650–656.
[8] Huqun, Izumi S., Miyazawa H., Ishii K., Uchiyama B., Ishida T., Tanaka S., Tazawa R., Fukuyama S., Tanaka T., Nagai Y., Yokote A., Takahashi H., Fukushima T., Kobayashi K., Chiba H., Nagata M., Sakamoto S., Nakata K., Takebayashi Y., Shimizu Y., Kaneko K., Shimizu M., Kanazawa M., Abe S., Inoue Y., Takenoshita S., Yoshimura K., Kudo K., Tachibana T., Nukiwa T., Hagiwara K. Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis Am. J. Respir. Crit. Care Med 2007 175, N 3 P. 263–268.
[9] Rangel L. B., Sherman-Baust C. A., Wernyj R. P., Schwartz D. R., Cho K. R., Morin P. J. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression Oncogene 2003 22, N 46 P. 7225–7232.
[10] Jarzab B., Wiench M., Fujarewicz K., Simek K., Jarzab M., Oczko-Wojciechowska M., Wloch J., Czarniecka A., Chmielik E., Lange D., Pawlaczek A., Szpak S., Gubala E., Swierniak A. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications Cancer Res 2005 65, N 4 P. 1587–1597.
[11] Chen D. R., Chien S. Y., Kuo S. J., Teng Y. H., Tsai H. T., Kuo J. H., Chung J. G. SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer Anticancer Res 2010 30, N 10 P. 4135–4140.
[12] Xu C. X., Jin H., Lim H. T., Ha Y. C., Chae C. H., An G. H., Lee K. H., Cho M. H. Low dietary inorganic phosphate stimulates lung tumorigenesis through altering protein translation and cell cycle in K-ras (LA1) mice Nutr. Cancer 2010 62, N 4 P. 525–532.
[13] Yin B. W., Kiyamova R., Chua R., Caballero O. L., Gout I., Gryshkova V., Bhaskaran N., Souchelnytskyi S., Hellman U., Filonenko V., Jungbluth A. A., Odunsi K., Lloyd K. O., Old L. J., Ritter G. Monoclonal antibody MX35 detects the membrane transporter NaPi2b (SLC34A2) in human carcinomas Cancer Immun 2008 8 P. 3.
[14] Mattes M. J., Look K., Furukawa K., Pierce V. K., Old L. J., Lewis J. L. Jr., Lloyd K. O. Mouse monoclonal antibodies to human epithelial differentiation antigens expressed on the surface of ovarian carcinoma ascites cells Cancer Res 1987 47, N 24 (Pt 1) P. 6741–6750.
[15] Gryshkova V., Goncharuk I., Gurtovyy V., Khozhayenko Y., Nespryadko S., Vorobjova L., Usenko V., Gout I., Filonenko V., Kiyamova R. The study of phosphate transporter NAPI2B expression in different histological types of epithelial ovarian cancer Exp. Oncol 2009 31, N 1 P. 37–42.
[16] Rubin S. C., Kostakoglu L., Divgi C., Federici M. G., Finstad C. L., Lloyd K. O., Larson S. M., Hoskins W. J. Biodistribution and intraoperative evaluation of radiolabeled monoclonal antibody MX35 in patients with epithelial ovarian cancer Gynecol. Oncol 1993 51, N 1 P. 61–66.
[17] Andersson H., Cederkrantz E., Back T., Divgi C., Elgqvist J., Himmelman J., Horvath G., Jacobsson L., Jensen H., Lindegren S., Palm S., Hultborn R. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab')2 – a phase I study J. Nucl. Med 2009 50, N 7 P. 1153–1160.
[18] Elgqvist J., Andersson H., Back T., Hultborn R., Jensen H., Karlsson B., Lindegren S., Palm S., Warnhammar E., Jacobsson L. Therapeutic efficacy and tumor dose estimations in radioimmunotherapy of intraperitoneally growing OVCAR-3 cells in nude mice with (211)At-labeled monoclonal antibody MX35 J. Nucl. Med 2005 46, N 11 P. 1907–1915.
[19] Malluche H. H., Monier-Faugere M. C. Hyperphosphatemia: pharmacologic intervention yesterday, today and tomorrow Clin. Nephrol 2000 54, N 4 P. 309–317.
[20] Loghman-Adham M., Levi M., Scherer S. A., Motock G. T., Totzke M. T. Phosphonoformic acid blunts adaptive response of renal and intestinal Pi transport Am. J. Physiol 1993 265, N 6 (Pt 2) P. F756–763.
[21] Peerce B. E., Clarke R. A phosphorylated phloretin derivative. Synthesis and effect on intestinal Na(+)-dependent phosphate absorption Am. J. Physiol. Gastrointest. Liver Physiol 2002 283, N 4 P. G848–855.
[22] Matsuo A., Negoro T., Seo T., Kitao Y., Shindo M., Segawa H., Miyamoto K. Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo Eur. J. Pharmacol 2005 517, N 1–2 P. 111–119.
[23] Gryshkova V. S., Lituyev D. S., Filonenko V. V., Kiyamova R. G. Creation of cellular models for the analysis of sodium-dependent phosphate transporter NaPi2b, a potential marker for ovarian cancer Biopolym. Cell 2009 25, N 2 P. 95–100.
[24] Kiyamova R., Gryshkova V., Ovcharenko G., Lituyev D., Malyuchik S., Usenko V., Khozhayenko Y., Gurtovyy V., Yin B., Ritter G., Old L., Filonenko V., Gout I. Development of monoclonal antibodies specific for the human sodium-dependent phosphate co-transporter NaPi2b Hybridoma 2008 27, N 4 P. 277– 284.