Biopolym. Cell. 2011; 27(2):124-131.
Structure and Function of Biopolymers
Signaling pathways involved in apoptosis induced by novel angucycline antibiotic landomycin E in Jurkat T leukemia cells
- Institute of Cell Biology, NAS of Ukraine
14/16, Drahomanov Str., Lviv, Ukraine, 79005
Abstract
Aim. To study the molecular mechanisms of action of novel anticancer antibiotic landomycin E (LE). Methods. Annexin V/propidium iodide, DAPI (4',6-diamidino-2-phenylindole) staining, Western-blot analysis. Results. LE applied in 2 µg/ml dose (IC50), induced reactive oxygen species (ROS)-dependent splitting of poly [ADP-ribose] polymerase 1 (PARP-1) and DNA Fragmentation Factor 45 (DFF45) proteins involved in DNA reparation. This effect was observed 6 h after the start of treatment and it positively correlated with phosphatidyl serine externalization (early morphological marker of apoptosis). We suggest that cleavage of PARP-1 and DFF45 was mediated by active caspase-7 which is a key effector caspase in the LE-induced apoptosis in leukemia cells. We found that activation of initiator procaspase-10 (involved in receptor-mediated apoptosis) was the earliest detected event in LE-induced apoptotic signaling pathways; however, this activation was shown to be ROS-independent. We also demonstrated that the induction of apoptosis by LE is accompanied by activation of apoptosis-inducing factor (AIF) in mitochondria. Conclusions. Our data suggest that LE-induced cascade of apoptotic events is started by the initiator caspase-10 which leads to activation of the effector caspase-7 and AIF that is known to induce caspase-independent apoptosis involving ROS generation.
Keywords: tumor cells, landomyсin E, apoptosis, caspases, AIF, reactive oxygen species
Full text: (PDF, in English)
References
[1]
Rohr J., Hertweck C. Type II PKS Comprehensive natural products II: Chemistry and Biology / Eds L. Mander, H.-W. Liu Oxford: Elsevier, 2010 Vol. 1 P. 227–303.
[3]
Krohn K., Rohr J. Angucyclines: Total syntheses, new structures and biosynthetic studies of an emerging new class of antibiotics Top. Curr. Chem 1997 188 P. 127–195.
[4]
Ostash I., Ostash B., Luzhetskyy A., Bechthold A., Walker S., Fedorenko V. Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136 FEMS Microbiol. Lett 2008 285, N 2 P. 195–202.
[5]
Henkel T., Rohr J., Beale J.M., Schwenen L. Landomycins, new angucycline antibiotics from Streptomyces sp. I. Structural studies on landomycins A-D J. Antibiot 1990 43, N 5 P. 492– 503.
[6]
Luzhetskyy A., Zhu L., Gibson M., Fedoryshyn M., Durr C., Hofmann C., Hoffmeister D., Ostash B., Mattingly C., Adams V., Fedorenko V., Rohr J., Bechthold A. Generation of novel landomycins M and O through targeted gene disruption Chembiochem 2005 6, N 4 P. 675–678.
[7]
Shaaban K. A., Srinivasan S., Kumar R., Damodaran C., Rohr J. Landomycins P-W, cytotoxic angucyclines from Streptomyces cyanogenus S-136 J Nat Prod 2011 74, N 1 P. 2–11.
[8]
Crow R. T., Rosenbaum B., Smith R., Guo Y., Ramos K. S., Sulikowski G. A. Landomycin A inhibits DNA synthesis and G1/S cell cycle progression Bioorg. Med. Chem. Lett 1999 9, N 12 P. 1663–1666.
[9]
Depenbrock H., Bornschlegl S., Peter R., Rohr J., Schmid P., Schweighart P., Block T., Rastetter J., Hanauske A. R. Assessment of antitumor activity of landomycin A (NSC 6399187-A) Ann. Hematol 1996 73 (Suppl. II) A80/316.
[10]
Matselyukh B. P., Konovalova T. A., Polistchuk L. V., Bambura O. I. Sensitivity of streptomycetes producing polyketyde antibiotics to landomycine A and E Mikrobiol. Zh. 1998 60 P. 31–36.
[11]
Korynevska A. V., Matselyukh B. P., Stoika R. S. In vitro study of landomycin E antitumor activity Exp. Oncol 2003 25, N 2 P. 98–104.
[12]
Polistchuk L. V., Ganusevich P., Matselyukh B. P. The study of antitumor action of antibiotics produced by Streptomyces globisporus 1912 on Guerin's carcinoma. Mikrobiol Zh. 1996 58 P. 55–58.
[13]
Panchuk R., Korynevska A., Ostash B., Osyp Y., Fedorenko V., Stoika R. Mechanisms of landomycin E action on mammalian cells Visn. L'viv Univ. Biol. Ser 2004 35 P. 54–59.
[14]
Korynevska A., Heffeter P., Matselyukh B., Elbling L., Micksche M., Stoika R., Berger W. Mechanisms underlying the anticancer activities of the angucycline landomycin E Biochem. Pharmacol 2007 74, N 12 P. 1713-1726.
[15]
Panchuk R. R., Boiko N. M., Lootsik M. D., Stoika R. S. Changes in signaling pathways of cell proliferation and apoptosis during NK/Ly lymphoma aging Cell Biol. Int 2008 32, N 9 P. 1057–1063.
[16]
Vermes I., Haanen C., Steffens-Nakken H., Reutellingsperger C. A novel assay for apoptosis – flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V J. Immunol. Meth 1995 184 N 1 P. 39–51.
[17]
Nitiss J. Targeting DNA topoisomerase II in cancer chemotherapy Nat. Rev Cancer 2009 9, N 5 P. 338–350.
[18]
Tsang W. P., Chau S. P., Kong S. K., Fung K. P., Kwok T. T. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis Life Sci 2003 73 N 16 P. 2047–2058.
[19]
Gewirtz D. A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin Biochem. Pharmacol 1999 57, N 7 P. 727–741.
[20]
Manda G., Nechifor M., Neagu T-M. Reactive oxygen species, cancer and anti-cancer therapies Curr. Chem. Biol 2009 3, N 1 P. 22-46.
[21]
Verbrugge I., Maas C., Heijkoop M., Verheij M., Borst J. Radiation and anticancer drugs can facilitate mitochondrial bypass by CD95/Fas via c-FLIP downregulation Cell Death Differ. 2010 17, N 3 P. 551–561.
[22]
Kim R., Tanabe K., Uchida Y., Emi M., Inoue H., Toge T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy Cancer Chemother. Pharmacol 2002 50, N 5 P. 343–352.
[23]
Constantinou C., Papas K. A., Constantinou A. I. Caspase-independent pathways of programmed cell death: the unraveling of new targets of cancer therapy? Curr. Cancer Drug Targets 2009 9, N 6 P. 717–728.
[24]
Susin S.A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M., Larochette N., Goodlett D. R., Aebersold R., Siderovski D. P., Penninger J. M., Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397, N 6718 P. 441–446.
[25]
Joza N., Pospisilik J.A., Hangen E., Hanada T., Modjtahedi N., Penninger J.M., Kroemer G. AIF: not just an apoptosis-inducing factor Ann. N. Y. Acad. Sci 2009 1171 P. 2–11.
[26]
Modjtahedi N., Giordanetto F., Madeo F., Kroemer G. Apoptosis-inducing factor: vital and lethal Trends Cell. Biol 2006 16 N 5 P. 264–272.