Biopolym. Cell. 2010; 26(5):384-389.
Molecular Biophysics
Complexing 7,3',4'-tryoxiflavonol with cell phosphatidylcholine
- Bashkir State Medical University
3, Lenin Str., Ufa, Bashkortostan, Russian Federation, 450000
Abstract
Aim. To investigate the complex formation of 7,3',4'-tryoxyflavonol of flavonoids group with cellular phosphatidylcholine. Methods. Semi-empirical quantum chemistry, spectroscopy NMR. Results. The changes in conformational status of 7,3',4'-tryoxyflavonol at complex formation have been shown. Conclusions. The conformational changes in phosphatidylcholine take place under the 7,3',4'-tryoxyflavonol/phosphatidylcholine complex formation.
Keywords: comlexing, tryoxyflavonol, phosphatidylcholinе, NMR-spectroscopy, Overhauser effects, semi-empirical quantum chemistry
Full text: (PDF, in English) (PDF, in Russian)
References
[1]
Kahl R. Protective and adverse biological actions of phenolic antioxidants Oxidative stress: Oxidants and antioxidants. Ed. H. Sies London: Acad. press, 1991:245–273.
[2]
van Acker S. A., van den Berg D. J., Tromp M. N., Griffioen D. H., van Bennekom W. P., van der Vijgh W. J., Bast A. Structural aspects of antioxidant activity of flavonoids Free Radic. Biol. Med 1996 20, N 3:331–342.
[3]
Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationship of flavonoids and phenolic acids Free Radic. Biol. Med 1996 20, N 11:933–937.
[5]
Middleton E. Jr., Kandaswami C. The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer The Flavonoids. Advances in research since 1986. Ed. J. B. Harbone London: Chapman & Hall, 1993:619–652.
[6]
So F. V., Guthrie N., Chambers A. F., Moussa M., Carroll K. K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices Nutr. and Cancer 1996 26, N 2:167–181.
[7]
Potyahaylo A. L., Pylypchuk L. B., Hovorun D. M. Cooperative intramolecular H-bonds in quercetine: MNDO/H quantum chemical investigation. Biopolym. Cell. 2001 17, N 3:256–258.
[8]
Nasibullin R. S., Spirihin L. V., Ponomareva V. A. Formation of complexes of a molecule pyrazole with phospholipids. Biophysics. 1991; 36, N 4:594–598.
[9]
Nasibullin R. S., Nikitin T. I., Afanaseva J. G., Nasibullin T. R., Spirihin L. V. Complex 3,5,7,3',4'-pentaoxyflavonol with phosphatidylcholine. Chem. Pharm. J. 2002; 36, N 9 P. 33–36.
[10]
Setchenkov M. S., Usmanova S. I., Afanaseva J. G., Nasibullin R. S. Comlexing of some biologically active molecules with phosphatidylcholine. Russ. Phys. J. 2009; 52, N 4 P. 417–420.
[11]
Allen M. P., Tidesley D. J. Computer simulation of liquids Oxford: Clarendon press, 1987 230 p.
[12]
Nasibullin R. S., Serebrinik M. A. Study on the structure of phosphatidylcholine-pyrazole and phosphatidylcholine-pyridine complexes Biopolym. Cell 2002 18, N 1:76–80.
[13]
Breitmaier E., Spohn K. N. The pH-dependence of carbon-13 chemical shifts of six-membered nitrogen heteroaromatics Tetrahedron 1973 29, N 8:1145–1152.
[14]
Derome E. Modern NMR techniques for chemistry research London: Pergamon press, 1992 401 p.
[15]
Nasibullin R. S., Kosareva D. I., Spirichin L. V. Pyridinephosphatidylcholine complex. Biophysics. 2002; 47, N 5 P. 820–824.
[16]
Iogansen A. V. The hydrogen bond Moscow: Nauka, 1981 220 p.
[17]
Nasibullin R. S, Sharafutdinova R. R., Afanaseva J. G. Conformational condition miricetin in the conditions of the interaction with cellular membranes. Struct. and Dynam. Mol. Syst. 2003; 10, N 2:194–196.