Biopolym. Cell. 2010; 26(4):311-316.
Bioinformatics
Identification of hierarchy of dynamic domains in proteins: comparison of HDWA and HCCP techniques
1Yesylevskyy S. O.
  1. Institute of Physics, NAS of Ukraine
    46, Prospect Nauki, Kyiv, Ukraine, 03028

Abstract

Aim. There are several techniques for the identification of hierarchy of dynamic domains in proteins. The goal of this work is to compare systematically two recently developed techniques, HCCP and HDWA,on a set of proteins from diverse structural classes. Methods. HDWA and HCCP techniques are used. The HDWA technique is designed to identify hierarchically organized dynamic domains in proteins using the Molecular Dynamics (MD) trajectories, while HCCP utilizes the normal modes of simplified elastic network models. Results. It is shown that the dynamic domains found by HDWA are consistent with the domains identified by HCCP and other techniques. At the same time HDWA identifies flexible mobile loops of proteins correctly, which is hard to achieve with other model-based domain identification techniques. Conclusion. HDWA is shown to be a powerful method of analysis of MD trajectories, which can be used in various areas of protein science.
Keywords: Dynamic domains, domain identification, Hierarchical Domain-Wise Alignment, molecular dynamics

References

[1] Yesylevskyy S. O., Kharkyanen V. N., Demchenko A. P. Hierarchical clustering of the correlation patterns: New method of domain identification in proteins Biophys. Chem 2006 119, N, 1:84–93.
[2] Yesylevskyy S. O., Kharkyanen V. N., Demchenko A. P. Dynamic protein domains: identification, interdependence and stability Biophys. J 2006 91, N 2:670–685.
[3] Yesylevskyy S. O., Kharkyanen V. N., Demchenko A. P. The change of protein intradomain mobility on ligand binding, is it a commonly observed phenomenon? Biophys. J 2006 91, N 8:3002–3013.
[4] Yesylevskyy S. O., Kharkyanen V. N., Demchenko A. P. The blind search for the closed states of hinge-bending proteins Proteins: Structure, Function, and Bioinformatics 2007 71, N 2:831–843.
[5] Atilgan A. R., Durell S. R., Jernigan R. L., Demirel M. C., Keskin O., Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model Biophys. J 2001 80, N 1:505–515.
[6] Bahar I., Atilgan A. R., Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential Fold Des 1997 2, N 3:173–181.
[7] Yildirim Y., Doruker P. Collective motions of RNA polymerases. Analysis of core enzyme, elongation complex and holoenzyme J. Biomol. Struct. Dyn 2004 22, N 3:267– 280.
[8] Keskin O. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase J. Biomol. Struct. Dyn 2002 20, N 3:333–345.
[9] Doruker P., Atilgan A. R., Bahar I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to -amylase inhibitor Proteins 2000 40, N 3:512–524.
[10] Levitt M., Sander C., Stern P. S. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme J. Mol. Biol 1985 181, N 3:423–447.
[11] Hinsen K. Analysis of domain motions by approximate normal mode calculations Proteins 1998 33, N 3:417– 429.
[12] Hayward S., Berendsen H. J. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme Proteins 1998 30, N 2:144–154.
[13] Chattopadhyaya R., Meador W. E., Means A. R., Quiocho F. A. Calmodulin structure refined at 1.7 A resolution J. Mol. Biol 1992 228, N 4:1177–1192.
[14] Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K. Crystal structure of human serum albumin at 2.5 C resolution Protein Eng 1999 12, N 6:439–446.
[15] Oh B. H., Pandit J., Kang C. H., Nikaido K., Gokcen S., Ames G. F. L., Kim S. H. Three-dimensional structures of the periplasmic lysine-, arginine-, ornithine-binding protein with and without a ligand J. Biol.Chem 1993 268, N 15 P. 11348–11355.
[16] Chatani E., Hayashi R., Moriyama H., Ueki T. Conformational strictness required for maximum activity and stability of bovine pancreatic ribonuclease A as revealed by crystallographic study of three Phe120 mutants at 1.4 C resolution Protein Sci 2002 11, N 1:72–81.
[17] Hess B., Kutzner C., van der Spoel D., Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation J. Chem. Theor. Comp 2008 4, N 3:435–447.
[18] Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. Molecular dynamics with coupling to an external bath J. Chem. Phys 1984 81, N 8:3684–3690.
[19] van Gunsteren W. F., Kruger P., Billeter S. R., Mark A. E., Eising A. A., Scott W. R. P., Huneberger P. H., Tironi I. G. Biomolecular Simulation: The GROMOS96 Manual and User Guide Groningen; Zurich: Biomos/Hochschul AG, 1996 1044 p.
[20] Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Computational Chem. 1997; 18, N 12:1463–1472.
[21] Miyamoto S., Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comp. Chem 1992 13, N 8:952–962.
[22] Tom D., Darrin Y., Lee P. Particle mesh Ewald: An N [centerdot] log(N) method for Ewald sums in large systems J. Chem. Phys 1993 98, N 12:10089–10092.
[23] Feenstra K. A., Hess B., Berendsen H. J. C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems J. Comp. Chem 1999 20, N 8 P. 786–798.
[24] Humphrey W., Dalke A., Schulten K. VMD – Visual Molecular Dynamics J. Mol. Graph 1996 14, N 1:33–38.