Biopolym. Cell. 2010; 26(3):218-224.
Bioorganic Chemistry
Effect of 24-epibrassinolide on lipoxygenase activity in maize seedlings under cold stress
1Kopich V. N., 1Kretynin S. V., 1Kharchenko O. V., 2Litvinovskaya R. P., 2Chashina N. M., 2Khripach V. A.
  1. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094
  2. Institute of Bioorganic Chemistry, NAS of Belarus
    5/2, Kuprevich Str., Minsk, Republic of Belarus, 220141

Abstract

Aim. To investigate 24-epibrassinolide influence on the maize seedlings 9- and 13-lipoxygenases activity (9- and 13-LOX) under normal conditions (25 oC) and cold stress (5 oC). Methods. LOX activity was measured after treatment of seedlings with 0.01 and 1 μM 24-epibrassinolide. The enzymes were extracted from maize seedlings with 0.1 M sodium acetate (pH 4.5) buffer, supplemented with a non-ionic detergent (0.1 % Brij-99) and EDTA (0.1 mM). The 9- and 13-LOX activities were determined spectrophotometrically at 234 nm using linoleic acid as substrate at pH 6.0 and 7.0 in the presence or absence of 0.02 % Lubrol PX. Results. 3-6-fold increase in LOX activity of 24-epibrassinolide-treated seedlings was demonstrated under normal conditions. Cold stress in the presence of 1µM 24-epibrassinolide enhances the activities of 9- and 13- LOX by 4 and 10 times, respectively. Conclusions. The results obtained enlarge our understanding of possible pathways of LOX metabolites involvement in the formation of cell response to brassinosteroids.
Keywords: linoleic acid, lipoxygenase, 24-epibrassinolide, activation, cold stress

References

[1] Rokach J. Leukotrienes and Lipoxygenases. Chemical, biological and clinical aspects. New York: Elsevier, 1989 518 p.
[2] Feussner I., Wasternack C. The lipoxygenase pathway Annu. Rev. Plant Biol 2002 53:275–297.
[3] Grechkin A. N., Tarchevsky I. A. The lipoxygenase signaling system. Russ. J. Plant Physiol. 1999; 46, N 1:114–123.
[4] Lee S. H., Ahn S. J., Im Y. J., Cho K., Chung G. C., Cho B. H., Han O. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots Biochem. Biophys. Res. Communs 2005 330, N 4:1194–1198.
[5] Nemchenko A., Kunze S., Feussner I., Kolomiets M. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments J. Exp. Bot 2006 57, N 14 P. 3767–3779.
[6] Porta H., Rueda-Benitez P., Campos F., Colmenero-Flores J. M., Colorado J. M., Carmona M. J., Covarrubias A. A., Rocha-Sosa M. Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions Plant and Cell Physiol 1999 40, N 8:850–858.
[7] Ben-Hayyim G., Gueta-Dahan Y., Avsian-Kretchmer O., Weichert H., Feussner I. Preferential induction of a 9-lipoxygenase by salt in salt-tolerant cells of Citrus sinensis L. Osbeck Planta 2001 212, N 3:367–375.
[8] Reymond P., Farmer E. E. Jasmonate and salicylate as global signals for defense gene expression Curr. Opin. Plant Biol 1998 1, N 5:404–411.
[9] Nishiuchi T., Hamada T., Kodama H., Iba K. Wounding changes the spatial expression pattern of the Arabidopsis plastid -3 fatty acid desaturase gene (FAD7) through different signal transduction pathways Plant Cell 1997 9, N 10 P. 1701–1712.
[10] Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate Plant Physiol 1993 101, N 2:441–450.
[11] Bell E., Creelman R. A., Mullet J. E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis Proc. Natl. Acad. Sci. USA 1995 92, N 19:8675–8679.
[12] Laudert D., Weiler E. W. Allene oxide synthase: A major control point in Arabidopsis thaliana octadecanoid signalling Plant J 1998 15, N 5:675–684.
[13] Fedina E. O., Karimova F. G., Chechetkin I. R., Tarchevskij I. A., Khripach V. A. The contribution of lipoxygenase metabolism in the brassinosteroid signaling pathway. Dokl Biochem Biophys. 2004; 395, N 2:80-3.
[14] Mussig C., Biesgen C., Lisso J., Uwer U., Weiler E. W., Altmann T. A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis J. Plant Physiol. 2000; 157, N 2:143–152.
[15] Schaller F., Biesgen C., Mussig C., Altmann T., Weiler E. W. 12-oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis Planta 2000 210, N 6:979–984.
[16] Mussig C., Lisso J., Coll-Garcia D., Altmann T. Molecular analysis of brassinosteroid action Plant Biol 2006; 8, N 3:291–296.
[17] Poca E., Rabinovitch-Chable H., Cook-Moreau J., Pages M., Rigaud M. Lipoxygenases from Zea mays L. Purification and physicochemical characteristics Biochim. Biophys. Acta – Lipids and Lipid Metabolism. 1990; 1045, N 2:107–114.
[18] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem 1976 72, N 1–2:248–254.
[19] Schilstra M., Veldink G., Vliegenthart J. Effect of nonionic detergents on lipoxygenase catalysis Lipids 1994 29, N 4:225–231.
[20] Gibian M. J., Vandenberg P. Product yield in oxygenation of linoleate by soybean lipoxygenase: The value of the molar extinction coefficient in the spectrophotometric assay Anal. Biochem 1987 163, N 2:343–349.
[21] Butovich I. A., Kharchenko O. V., Naboka Y. N., Kazachkov M. G. Characterization of the substrate aggregation state in 5lipoxygenase oxidation of linoleic acid. Ukr. Biokhim. Zh. 2001; 73, N 2:39–43.
[22] Kharchenko O. V., Kulinichenko H. I., Butovych I. A. Kinetic mechanisms of linoleic acid oxidation by 5-lipoxygenase from Solanum tuberosum L. Ukr. Biokhim. Zh. 1999; 71, N 4:40–44.
[23] Kharchenko O. V., Skaterna T. D., Kazachkov M. G., Butovich I. A. The role of 4-hydroxy-TEMPO in the reaction of the linoleyl alcohol oxidation by potato tuber 5-lipoxygenase. Biopolym. Cell. 2001; 17, N 2:147–151.
[24] Vovk A. I., Kharchenko O. V., Kharitonenko A. I., Kukhar V. P., Babii L. V., Kazachkov M. G., Melnyk A. K., Khilchevsky A. N. Hydrophobic nitroxyl radicals inhibit linoleyl alcohol oxidation by 5-lipoxygenase Russ. J. Bioorg. Chem 2004 30, N 4:391–395.
[25] Kharchenko O. V., Kharitonenko A. I., Vovk A. I., Kukhar V. P., Babiy L. V., Khilchevskyi A. N., Melnyk A. K. Inhibiting properties of stable nitroxyl radicals in reactions of linoleyl acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase. Ukr. Biokhim. Zh. 2005; 77, N 1:52–57.
[26] Butovich I. A., Tsys' E., V., Mogilevich T. V., Kukhar V. P. The influence of physicochemical factors on linoleic acid oxidation by lipoxygenase. Bioorg. Khim. 1991; 17, N 10:1273–1280.
[27] Butovich I. A., Kharchenko O. V., Babenko V. M. On the interfacial phenomena in lipoxygenase catalysis. Adv. Prostagland. Thromb Leuk. Res. 1995; 23:159–161.
[28] Khripach V., Zhabinskii V., De Groot A. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000; 86, N 3 P. 441–447.
[29] Schaller H. The role of sterols in plant growth and development Prog. Lipid Res 2003 42, N 3:163–175.
[30] Tarchevsky I. A. Plant Cell Signaling Systems M.: Nauka, 2002 294 p.
[31] Farmer E. E., Ryan C. A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors Plant Cell 1992 4, N 2:129–134.
[32] Karimova F. G., Tarchevsky I. A., Mursalimova N. U., Grechkin A. N. Effect of 12-hydroxydodecenoic acid, a product of the lipoxygenase pathway, on plant protein phosphorylation. Russ. J. Plant Physiol. 1999; 46, N 1:128–131.
[33] Tarchevsky I. A., Karimova F. G., Grechkin A. N., Moukhametchina N. U. Influence of (9Z)-12-hydroxy-9-dodecenoic acid and methyl jasmonate on plant protein phosphorylation Biochem. Soc. Transact 2000 28, N 6:870–871.
[34] Monroy A. F., Sarhan F., Dhindsa R. S. Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression: Evidence for a role of calcium Plant Physiol 1993 102, N 4:1227–1235.