Biopolym. Cell. 2010; 26(1):23-28.
Structure and Function of Biopolymers
The effect of lipopolysaccharide of Pseudomonas syringae pv. atrofaciens 9417 on mutagenicity in pro- and eukaryotic systems
- D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03680
Abstract
Aim. To study the effect of lipopolysaccharide (LPS) of Pseudomonas syringae pv. atrofaciens on spontaneous and induced mutations in pro- and eukaryotic test-systems. Methods. Mutagenic and antimutagenic properties of LPS were studied in Allium cepa-test and Ames test. Results. LPS does not influence the spontaneous mutations of Salmonella typhimurium and decreases the level of mutations induced by potassium dichromate and N-methyl-N'-nitro-N'-nitrosoguanidine. LPS reduces a mitotic index at concentrations of 10.0 and 5.0 mg/ml and increases the number of chromosomes’ fragments in cells of A. cepa root apical meristem at concentrations of 5.0 and 2.5 mg/ml. Conclusion. Different effect of LPS on mutagenesis in pro- and eukaryotic cells has been established. LPS revealed mutagenic properties in A. cepa-test and antimutagenic properties in Ames test.
Keywords: mutations, chromosome aberrations, LPS
Full text: (PDF, in English) (PDF, in Ukrainian)
References
[1]
Varbanets LD, Zakharova IYa, Gvozdyak RI, Muras VA. Glycopolymers of Pseudomonas solanacearum and their role in plant infectivity. Mikrobiol Zh. 1989; 51(2):25-32.
[2]
Dow M., Newman M. A., von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides Annu. Rev. Phytopathol 2000 38241– 261.
[3]
Jakovleva LM. Role of bacterial glycopolymers in pathogenesis of plant bacterioses. Mikrobiol Zh. 1992 54(3):87–102.
[4]
Lugtenberg B. J. J., Chin-A-Woegn T. F. C., Bloemberg G. V. Microbe-plant interactions: principles and mechanisms Antonie van Leeuwenhoek 2002 81 P. 373–383.
[5]
Vashchenko L. N., Pasichnik L. A., Bogdan Ju. N., Gvozdjak R. I. Antimutagenic activity of the lipopolysaccharide of Pseudomonas syringae pv. syringae UKM V-1027 Materials of the Int. sci. conf. (1–2 june, 2006, Minsk-Rakov) Minsk, 2006 P. 68–71.
[6]
Vashchenko L. M., Pasichnyk L. A., Gvozdyak R. I. Influence of Pseudomonas syringae pv. atrofaciens lipopolysaccharide on spontaneous and induced by bichromate potassium mutagenesis in Salmonella typhimurium. Biopolym. cell 2004; 20, N 4 P. 295–299.
[7]
Bogdan Ju. M., Butsenko L. M., Pasichnik L. A., Gvozdjak R. I. Antimutagenic activity of the lipopolysaccharide of Pseudomonas syringae pv. atrofaciens 9400. Nauk. Visn. Uzhhorod. Univ. (Ser. Biol.) 2008; 24 P. 110–113.
[8]
Gvozdyak RI, Vashenko LM, Pasichnik LA. Gene protective activity of Pseudomonas syringae pv. coronafaciens 9030 lipopolysaccharide. Dopovidi Nats Akad Nauk Ukrainy. 2003;(4):159–62.
[9]
Zacharova I. Ja., Kosenko L. V. Metody izuchenija mikrobnyh polisaharidov K.: Nauk. dumka, 1982 192 p.
[10]
Fonshtejn L. M., Kalinina L. M., Poluhina G. N., Abilev S. K., Shapiro A. A. Test-sistema otsenki mutagennoy aktivnosti zagryazniteley sredy na Salmonella (Metodicheskie ukazanija) M., 1977 P. 1–52.
[11]
Vashchenko L. M. Mechanism of antimutagenic activity of Pseudomonas syringae lipopolysaccharides. Mikrobiol Z. 2005; 65, N 2 P. 30–38.
[12]
Butsenko L. M. Gene modulation activity of culture liquid and lipopolysaccharide Pseudomonas syringae pv. syringae UKM V-1027. Nauk. Visn. Uzhhorod. Univ. (Ser. Biol.) 2008; 22 P. 80–83.
[13]
Rank J. The method of Allium anaphase-telophase chromosome aberration assay. Ekologiya (Vilnius) 2003; N 1 P. 38–42.
[14]
Borovikov V. P. Populyarnoe vvedenie v programmu Statistika M.: Komp'yuterPress, 1998 267 p.
[15]
Bogdan Ju. M., Butsenko L. M., Pasichnik L. A., Gvozdyak R. I. The study of mutagenicity of Pseudomonas syringae pv. atrofaciens 9400 lipopolysaccharide in Allium cepa-testi. Nauk. Zapysky NaUKMA 2008; 80:22–26.
[16]
Gahrton G., Robert K. H., Friberg K., Zech L., Bird A. G. Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood. 1980; 56, N 4: 640–647.
[17]
Sewerynek E, Ortiz GG, Reiter RJ, Pablos MI, Melchiorri D, Daniels WM. Lipopolysaccharide-induced DNA damage is greatly reduced in rats treated with the pineal hormone melatonin. Mol Cell Endocrinol. 1996;117(2):183-8.
[18]
Suliman H. B., Carraway M. S., Piantadosi C. A. Postlipopolysaccharide oxidative damage of mitochondrial dNA Amer. J. Respirat. and Crit. Care Med 2003 167: 570– 579.