Biopolym. Cell. 2009; 25(4):307-314.
Bioinformatics
Bioinformatic analysis of inverted repeats of coronaviruses genome
1, 2Limanskaya O. Yu.
  1. Mechnikov Institute of Microbiology and Immunology NAMS of Ukraine
    14, Pushkinska Str., Kharkiv, Ukraine, 61057
  2. Institute of Experimental and Clinical Veterinary Medicine, UAAS
    83, Pushkinska Str., Kharkov, Ukraine, 61023

Abstract

Aim. To design the maps of matched and mismatched potential hairpin structures in the genomes of human and animal coronaviruses. Methods. Bioinformatic analysis of coronaviruses nucleotide sequences, atomic force microscopy. Results. Thermodynamically stable matched and mismatched inverted repeats forming hairpin structures that can appear in genomic RNA of the human and animal coronaviruses (severe acute respiratory syndrome virus, murine hepatitis virus, porcine epidemic diarrhea virus, transmissible gastroenteritis virus and bovine coronavirus) are determined. The maps of hairpin localization (which are a part of the genome signaling mechanisms) are obtained for the genome of coronaviruses. Conclusions. The genes encoding replicase and spike glycoproteins of coronaviruses are the main sites of the localization of potential conservative structural motives. The hairpins are shown to be conservative structural elements inside the set of coronavirus isolates of one species.
Keywords: severe acute respiratory syndrome virus, coronavirus, hairpin structure, inverted repeat

References

[1] McClellan J., Boublikova P., Palecek E., Lilley D. Superhelical torsion in cellular DNA response directly to environmental and genetic factors Proc. Nat. Acad. Sci. USA 1990 87, N 21:8373–8377.
[2] Bagga R., Ramesh N., Brahmachari S. Supercoil-induced unusual DNA structures as transcriptional block Nucl. Acids Res 1990 18, N 11:. 3363–3369.
[3] Ward G., McKenzie R., Zannis-Hadjopoulos M., Price G. The dynamic distribution and quantification of DNA cruciforms in eukaryotic nuclei Exp. Cell Res 1990 188, N 2:. 235–246.
[4] Bessler J. DNA inverted repeats and human disease Frontiers in Biosci 1998 N 3:. d408–d418.
[5] Poon L., Guan Y., Nicholls J., Yuen K., Peiris J. The aetiolody, origins, and diagnosis of severe acute respiratory syndrome Lancet Infect. Dis 2004 4, N 11:663–671.
[6] Rychlik W., Spencer W., Rhoads R. Optimization of the annealing temperature for DNA amplification in vitro Nucl. Acids Res 1990 18, N 21:6409–6412.
[7] Brodsky L., Drachev A., Tatuzov R., Chumakov K. QenBee: a package of programs for biopolymers sequence analysis Biopolym. Cell 1991 7, N 1:10–14.
[8] Limanskii A. P. Study of cruciform structure in supercoiled pUC8 plasmid DNA by atomic force microscopy and computer modelling Biopolym. Cell 2002 18, N 5:401–405.
[9] pGEMEX-1 and pGEMEX-2 vectors Techn. Bull., Promega 2000 N 253:. 1–13.
[10] Limanskii A. P. Visualization of DNA–T7 RNA polymerase complex by atomic force microscopy Biopolym. Cell 2007 23, N 1:3–13.
[11] Panayotatos N., Fontaine A. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease J. Biol. Chem 1987 262, N 23:11364–11368.
[12] Panyutin I., Klishko V., Lyamichev V. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA J. Biomol. Struct. and Dyn 1984 1, N 4:1311–1324.
[13] Zarudnaya M. I., Potyahaylo A. L., Hovorun D. M. Conservative structural motifs in the 3' untranslated region of SARS coronavirus Biopolym. Cell 2003 19, N 3:298–303.
[14] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[15] Odynets K. A., Kornelyuk A. I. Molecular aspects of organization and expression of SARS-CoV coronavirus genome Biopolym. Cell 2003 19, N 5:414–431.
[16] Voineagu I., Narayanan V., Lobachev K., Mirkin S. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins Proc. Nat. Acad. Sci. USA 2008 105, N 29:9936–9941.