Biopolym. Cell. 2008; 24(6):463-469.
Structure and Function of Biopolymers
Distribution of hairpin-loop structures in plasmids of anthrax infectious agent
1, 2Limanskaya O. Yu., 1Limanskii A. P.
  1. Mechnikov Institute of Microbiology and Immunology NAMS of Ukraine
    14, Pushkinska Str., Kharkiv, Ukraine, 61057
  2. Institute of Experimental and Clinical Veterinary Medicine, UAAS
    83, Pushkinska Str., Kharkov, Ukraine, 61023

Abstract

An important biological function of hairpin-loop structures is the defense of RNA transcripts from degradation by different factors as well as the transcription regulation due to their formation in transcription terminators. The patterns of thermodynamically stable perfect and imperfect inverted repeats were determined for pXO1 and pXO2 plasmids of pathogenic Bacillus anthracis strains. A sequence analysis of these plasmids has shown the plasmid pXO1 contains 176 inverted repeats, the energy of which varies from –30.6 kcal/mol to –10.0 kcal/mol, and the plasmid pXO2 of B. anthracis contains 57 inverted sequences with energy from –27.2 kcal/mol to –10.0 kcal/mol. Physical maps of the pXO1 and pXO2 plasmids with located hairpins are presented. These hairpin-loop structures are shown to be localized in the sites of regulatory genes or the elements encoding proteins of unknown function.
Keywords: Bacillus аnthracis, hairpin-loop structure, inverted repeat, cruciform structure

References

[1] Problems and prospects of molecular genetics Moscow: Nauka, 2004; 2. 334p
[2] Subramanian A., Tamayo P., Mootha V. K., Mukherjee S., Ebert B. L., Gillette M. A., Paulovich A., Pomeroy S. L., Golub T. R., Lander E. S., Mesirov J. P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles Proc. Nat. Acad. Sci. USA 2005 102:15545–15550.
[3] Katayama S., Tomaru Y., Kasukawa T., Waki K., Nakanishi M., Nakamura M., Nishida H., Yap C. C., Suzuki M., Kawai J., Suzuki H., Carninci P., Hayashizaki Y., Wells C., Frith M., Ravasi T., Pang K. C., Hallinan J., Mattick J., Hume D. A., Lipovich L., Batalov S., Engstrom P. G., Mizuno Y., Faghihi M. A., Sandelin A., Chalk A. M., Mottagui-Tabar S., Liang Z., Lenhard B., Wahlestedt C. Antisense transcription in the mammalian transcriptome Science 2005 309:1564– 1566.
[4] Chunsun R., Kyunghee L., Cheonkwon Y., Won K. S., HeeBok O. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR Microbiol. Immunol 2003 47:693–699.
[5] Makino S. I., Cheun H. I., Watarai M., Uchida I., Takeshi K. Detection of anthrax spores from the air by real-time PCR Lett. Appl. Microbiol 2001 33:237–240.
[6] Ellerbrok H., Nattermann H., Ozel M., Beutin L., Appel B., Pauli G. Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR FEMS Microbiol. Lett 2002 214:51–59.
[7] Deutscher M., Li Z. Exoribonucleases and their multiple role in RNA metabolizm. Progr. Nucl. Acids Res. Mol. Biol. 2001; 66:67–105.
[8] Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages Annu. Rev. Genet 1999 33:193–227.
[9] Limanskiy A. P., Limanskaya O. YU., Volyanskiy YU. L Computer analysis of inverted repeats in the genome of Mycobacterium tuberculosis. Zh Mikrobiol Epidemiol Immunobiol. 2004;(5):48-52.
[10] Hacker J., Kaper J. Pathogenicity islands and the evolution of microbes Annu. Rev. Microbiol 2000 54:641–679.
[11] Rychlik W., Spencer W., Rhoads R. Optimization of the annealing temperature for DNA amplification in vitro Nucl. Acids Res 1990 18:6409–6417.
[12] Brodsky L. I., Drachev A. L., Tatuzov R. L., Chumakov K. M. QenBee: a package of programs for biopolymers sequence analysis Biopolym. Cell, 1991;7(1):10-14
[13] Lilley D. Hairpin-loop formation by inverted repeats in supercoiled DNA molecules Proc. Nat. Acad. Sci. USA. 1980; 77(11):6468–6472.
[14] Lyamichev V., Panyutin I., Mirkin S. The absence of cruciform structures from pAO3 plasmid DNA in vivo. J Biomol Struct Dyn. 1984;2(2):291-301.
[15] Sinden R., Pettijohn D. Cruciform transitions in DNA. J Biol Chem. 1984;259(10):6593-600.
[16] Kashlev M., Komissarova N. Transcription termination: primary intermediates and secondary adducts J. Biol. Chem 2002 277:14501–14508.
[17] Okinaka R. T., Cloud K., Hampton O., Hoffmaster A. R., Hill K. K., Keim P., Koehler T. M., Lamke G., Kumano S., Mahillon J., Manter D., Martinez Y., Ricke D., Svensson R., Jackson P. J. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harborning the anthrax toxin genes. J. Bacteriol. 1999; 181(20):6509–6515.
[18] Panyutin I., Lyamichev V., Lyubchenko Y. A sharp structural transition in pAO3 plasmid DNA caused by increased superhelix density FEBS Lett 1982 148:297–301.
[19] Panyutin I., Klishko V., Lyamichev V. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA J. Biomol. Struct. and Dyn 1984 1:1311–1324.
[20] Vologodskii A. Formation of unusual structures in the supercoiled DNA. Influence of transitions. Mol. Biol. 1988; 22:687–692.
[21] Nasar F., Jankowski C., Nag D. Long palindromic sequences induce double-stranded breaks during meiosis in yeast Mol. and Cell. Biol 2000 20:3449–3458.
[22] Lymans'kyi OP, Lymans'ka OIu. Study of microorganism genome DNA by atomic force microscopy. Tsitol Genet. 2002;36(4):30-6.
[23] Unniraman S., Chatterji M., Nagaraja V. A hairpin near the 5' end stabilises the DNA gyrase mRNA in Mycobacterium smegmatis Nucl. Acids Res 2002 30:5376–5381.
[24] Katayama T., Inoue N., Torigoe H. Location of the triplex DNA-binding domain of Saccaromyces cerevisiae Stm1 protein Nucl. Acids Res 2007 35:123–124.