Biopolym. Cell. 2007; 23(6):519-528.
Molecular Biophysics
Investigation of infrared spectrum of Fe(II) porphin in different spin states by quantum chemical density functional theory
1Minaev B. F., 1Minaev A. B., 2Hovorun D. N.
  1. B. Khmelnyckyy Cherkasy National University
    81, Shevchenko Blvd., Cherkassy, Ukraine, 18031
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The infrared (IR) absorption spectra of the Fe(II) porphin molecule (Fe(II)P) are calculated by the quantum-chemical method of density functional theory (DFT) for the singlet, triplet, and quintet spin states. The UB3LYP functional with the 6-311G basis set is used in geometry optimization and IR calculations. The quintet state 5B2g of the D2h symmetry is found to be the ground state. Though the close-lying triplet 3A2g and high-energy singlet 1A1g states belong to the D4h symmetry, the IR spectra have been analyzed in terms of the lower symmetry D2h point group. All IR active vibrations are tabulated and discussed. The low-frequency modes with large out-of-plane displacements of Fe(II) ion have different IR intensities, normal vibrations, and frequency shifts in the quintet state in respect to the singlet and triplet states.
Keywords: Fe(II) porphin, singlet, triplet, quintet, spin states, density functional theory, IR absorption spectrum, low-frequency modes

References

[1] Loew GH, Harris DL. Role of the heme active site and protein environment in structure, spectra, and function of the cytochrome p450s. Chem Rev. 2000;100(2):407-20.
[2] Kumar D, Hirao H, Que L Jr, Shaik S. Theoretical investigation of C--H hydroxylation by (N4Py)Fe(IV)=O(2+): an oxidant more powerful than P450? J Am Chem Soc. 2005;127(22):8026-7.
[3] Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648-55.
[4] Minaev BF. Spin effects in reductive activation of O2 by oxydase enzymes. RIKEN Rev. 2002; 44:147-9.
[5] Minaev BF. [Electronic mechanisms of molecular oxygen bioactivation]. Ukr Biokhim Zh. 2002;74(3):11-9.
[6] Blomberg MR, Siegbahn PE, Babcock GT, Wikstr?m M. O-O bond splitting mechanism in cytochrome oxidase. J Inorg Biochem. 2000;80(3-4):261-9.
[7] Harvey JN. Spin-forbidden CO ligand recombination in myoglobin. Faraday Discuss. 2004;127:165-77.
[8] Kozlowski PM, Spiro TG, B?rces A, Zgierski MZ. Low-Lying Spin States of Iron(II) Porphine. J Phys Chem B. 1998;102(14):2603–8.
[9] Liao M-S, Scheiner S. Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. J Chem Phys. 2002;117(1):205-19.
[10] Minaev B, ?gren H. Theoretical DFT study of phosphorescence from porphyrins. Chem Phys. 2005;315(3):215–39.
[11] Minaev BF, Minaeva VA, Vasenko AN. Spin states of the Fe(II)-porphin molecule: quantum chemical study by the density functional method. Ukr Bioorg Acta. 2007; 5(1):24–31.
[12] Choe Y-K, Nakajima T, Hirao K, Lindh R. Theoretical study of the electronic ground state of iron(II) porphine. II. J Chem Phys. 1999;111(9):3837-44.
[13] Solovjev KN, Gladkov LL, Starukhin AS, Shkirman SF. Spectroscopy of porphyrins: vibrational states. Minsk: Nauka i Tekhnika, 1985 415 p.
[14] Mamardashvili NZh, Golubchikov OA. Spectral properties of porphyrins and their precursors and derivatives. Russ Chem Rev. 2001; 70 (7), 577–606
[15] Gladkov LL, Gradyushko AT, Shulga AM, Solovyov KN, Starukhin AS. Experimental and theoretical investigation of infrared spectra of porphin, its deuterated derivatives and their metal complexes. J Mol Struct. 1978;47:463–93.
[16] Minaev B, Wang YH, Wang CK, Luo Y, Agren H. Density functional theory study of vibronic structure of the first absorption Qx band in free-base porphin. Spectrochim Acta A Mol Biomol Spectrosc. 2006;65(2):308-23.
[17] Kozlowski PM, Jarze?cki AA, Pulay P, Li X-Y, Zgierski MZ. Vibrational assignment and definite harmonic force field for porphine. 2. Comparison with nonresonance raman data. J Phys Chem. 1996;100(33):13985–92.
[18] Minaev BF, Minaev AB. Calculation of the phosphorescence of porphyrins by the density functional method. Optics and Spectroscopy. 2005;98(2):214–9.
[19] Frisch MJ, Trucks G.W, Schlegel HB. Gaussian 03, Revision 6.02. Wellington, 2004.
[20] Falk JE. Porphyrins and metalloporphyrins. Amsterdam; London; New-York: Elsevier, 1964. Vol. 2. 61 p.
[21] Zhu L, Sage JT, Champion PM. Observation of coherent reaction dynamics in heme proteins. Science. 1994;266(5185):629-32.