Biopolym. Cell. 2007; 23(6):495-500.
Molecular and Cell Biotechnologies
Development and characterization of monospecific anti-Sgt1 antibodies
1Kapustian L. N., 1Rozhko O. T., 1Bobyk V. I., 1Kroupskaya I. V., 1Sidorik L. L.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The method of development and purification of monospecific polyclonal antibodies against Sgt1 was described and their characteristics were presented. Protein Sgt1 plays an important role in the regulation of cell cycle, Hsp90-related proteasome degradation of proteins and pro/anti-apoptotic signaling along with other molecular chaperons and co-chaperons. The further investigation of Sgt1 role and its functioning with other members of Hsp90-chaperons family is important for elucidation of the cell signaling regulation, which is significant for cardio-vascular pathologies progression, particularly, for dilated cardiomyopathy.
Keywords: monospecific antibodies, Sgt1, chaperons

References

[1] Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell. 1999;4(1):21-33.
[2] Rodrigo-Brenni MC, Thomas S, Bouck DC, Kaplan KB. Sgt1p and Skp1p modulate the assembly and turnover of CBF3 complexes required for proper kinetochore function. Mol Biol Cell. 2004;15(7):3366-78.
[3] Yamamoto T, Mori Y, Ishibashi T, Uchiyama Y, Sakaguchi N, Furukawa T, Hashimoto J, Kimura S, Sakaguchi K. Characterization of Rad6 from a higher plant, rice (Oryza sativa L.) and its interaction with Sgt1, a subunit of the SCF ubiquitin ligase complex. Biochem Biophys Res Commun. 2004;314(2):434-9.
[4] Gray WM, Muskett PR, Chuang HW, Parker JE. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell. 2003;15(6):1310-9.
[5] Spiechowicz M, Filipek A. The expression and function of Sgt1 protein in eukaryotic cells. Acta Neurobiol Exp (Wars). 2005;65(2):161-5.
[6] Zou X, Ji C, Wang L, Wu M, Zheng H, Xu J, Jin F, Gu S, Ying K, Xie Y, Mao Y. Molecular cloning and characterization of SGT1.2, a novel splice variant of Homo sapiens SGT1. DNA Seq. 2004;15(2):140-3.
[7] Filipek A, Ku?nicki J. Molecular cloning and expression of a mouse brain cDNA encoding a novel protein target of calcyclin. J Neurochem. 1998;70(5):1793-8.
[8] Matsuzawa SI, Reed JC. Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell. 2001;7(5):915-26.
[9] Nikandrov VN, Chaplinskaya EV. Protein S-100: structural and functional properties and role in nervous tissue. Biopolym Cell. 2005; 21(1):12-27.
[10] Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ. Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem. 2004;279(16):16511-7.
[11] Sidorik LL, Rybkinska TA, Bakhiya NG, Rodnin NV, Filonenko VV, Entelis NS, Tarassov IA, Martin RP, Matsuka GKh. The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases. Biopolym Cell. 2000; 16(5):363-8.
[12] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
[13] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
[14] Sidorik LL, Gudzera OI, Dragovoz VA, Tukalo MA, Beresten SF. Immuno-chemical non-cross-reactivity between eukaryotic and prokaryotic seryl-tRNA synthetases. FEBS Lett. 1991;292(1-2):76-8.
[15] Matsiota P, Druet P, Dosquet P, Guilbert B, Avrameas S. Natural autoantibodies in systemic lupus erythematosus. Clin Exp Immunol. 1987;69(1):79-88.
[16] Ternynck T, Bleux C, Gregoire J, Avrameas S, Kanellopoulos-Langevin C. Comparison between autoantibodies arising during Trypanosoma cruzi infection in mice and natural autoantibodies. J Immunol. 1990;144(4):1504-11.
[17] Dispersyn GD, Borgers M. Apoptosis in the heart: about programmed cell death and survival. News Physiol Sci. 2001;16:41-7.
[18] Gottesman S, Wickner S, Maurizi MR. Protein quality control: triage by chaperones and proteases. Genes Dev. 1997;11(7):815-23.
[19] Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005;6(8):599-609.
[20] Jakob U. HSP90--news from the front. Front Biosci. 1996;1:d309-17.
[21] Nowotny M, Spiechowicz M, Jastrzebska B, Filipek A, Kitagawa K, Kuznicki J. Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins. J Biol Chem. 2003;278(29):26923-8.
[22] Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001;81(4):1461-97.
[23] Kapustian LN, Kyyamova RG, Gryshkova VS, Terentiev AG, Filonenko VV, Sidorik LL. Obtaining recombinant chaperon CroEL and its immunological cross-reactivity with Hsp60. Biopolym Cell. 2006; 22(2):117-20.