Biopolym. Cell. 2007; 23(4):368-375.
Bioinformatics
In silico approach to study and functionally analyze interferon regulated genes
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
Finding genes which have biologically meaningful ISRE (interferon-stimulated response element) is important for better understanding of the Jak-STAT activated cellular IFN response. We used transcription factor binding site (TFBS) search with gene orthology filtering to find putative ISREs in the promoters of protein-coding genes of Rattus norvegicus, and used Gene Ontology (GO) analysis to check the validity of ISRE search results in terms of biological meaning. A total of 23286 promoters of rat genes were analyzed. ISRE search with 80 % threshold produced 5214 sites in 4571 promoters. 850 ISREs in 768 promoters passed orthology filtering. Distribution of ISREs along the promoter in 768-gene set reveals 3 regions of ISRE localization: 0 to –250, –250 to –550, and above –550 relative to TSS (transcription start site). It is not yet known whether ISRE localization has any functional implications. Using BayGO, a total of 84 GO terms were found to be enriched at P < 0.05 in the 768-gene set. Among these categories some are directly related to known IFN actions (positive regulation of B cell differentiation, humoral immune response, response to virus, cell differentiation etc.). 768 gene set was compared to the 4571 gene set using GO Tree Machine. Such categories as cell differentiation, cell cycle, regulation of cell cycle, viral life cycle and some others were found to be enriched, and belong to the well-known domains of interferon actions. Their relative enrichment is an indirect indication that the applied orthology filtering does increase the quality of results. Gene orthology-based filtering of the initial TFBS search results was shown to produce viable and expected results. Genes identified in this research as containing ISRE in promoters will be used to seed the construction of the IFN-a-induced gene regulatory network.
Keywords: transcription factor binding site, interferon, ISRE, gene orthology, Gene Ontology
Full text: (PDF, in English)
References
[1]
Su G., Mao B., Wang J. A web server for transcription factor binding site prediction//Bioinformation.-2006.-1.-P. 156-157.
[2]
Zhao F., Xuan Z., Liu L., Zhang M. Q. TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies//Nucl. Acids Res.-2005.-33, suppl. 1.-P. D103-D107.
[3]
Sandelin A., Alkema W., Engstrom P., Wasserman W. W., Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles//Nucl. Acids Res.-2004.-32, suppl. 1.-P. D91-D94.
[4]
Lenhard B., Wasserman W. W. TFBS: Computational framework for transcription factor binding site analysis//Bioinformatics.-2002.-18.-P. 1135-1136.
[5]
Schones D. E., Sumazin P., Zhang M. Q. Similarity of position frequency matrices for transcription factor binding sites//Bioinformatics.-2005.-21.-P. 307-313.
[6]
Stormo G. D. DNA binding sites: representation and discovery//Bioinformatics.-2000.-16.-P. 16-23.
[7]
Staden R. Computer methods to locate signals in nucleic acid sequences//Nucl. Acids Res.-1984.-12.-P. 505-519.
[8]
Stormo G. D., Schneider T. D., Gold L., Ehrenfeucht A. Use of the «Perceptron» algorithm to distinguish translational initiation sites in E. coli//Nucl. Acids Res.-1982.-10.-P. 2997-3011.
[9]
Hertz G. Z., Stormo G. D. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences//Bioinformatics.-1999.-15.-P. 563-577.
[10]
Hertz G. Z., Hartzell G. W., III, Stormo G. D. Identification of consensus patterns in unaligned DNA sequences known to be functionally related//Bioinformatics.-1990.-6.-P. 81-92.
[11]
Stormo G. D., Hartzell G. W. Identifying protein-binding sites from unaligned DNA fragments//Proc. Nat. Acad. Sci. USA.-1989.-86.-P. 1183-1187.
[12]
Matys V., Kel-Margoulis O. V., Fricke E., Liebich I., Land S., Barre-Dirrie A., Reuter I., Chekmenev D., Krull M., Hornischer K., Voss N., Stegmaier P., Lewicki-Potapov B., Saxel H., Kel A. E., Wingender E. TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes//Nucl. Acids Res.-2006.-34, suppl. 1.-P. D108-D110.
[13]
Liu X. S., Brutlag D. L., Liu J. S. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments//Nat. Biotech.-2002.-20.-P. 835-839.
[14]
van Helden J., Andre B., Collado-Vides J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies//J. Mol. Biol.-2006.-281.-P. 827-842.
[15]
Pilpel Y., Sudarsanam P., Church G. M. Identifying regulatory networks by combinatorial analysis of promoter elements//Nat. Genet.-2001.-29.-P. 153-159.
[16]
Bussemaker H. J., Li H., Siggia E. D. Regulatory element detection using correlation with expression//Nat. Genet.-2001.-27.-P. 167-174.
[17]
Furman I., Pilpel Y. Promoting human promoters//Mol. Syst. Biol.-2006.-2.-P. E1-E2.
[18]
Zhang M. Q. Computational prediction of eukaryotic protein-coding genes//Nat. Revs Genet.-2002.-3.-P. 698-709.
[19]
Cartharius K., Frech K., Grote K., Klocke B., Haltmeier M., Klingenhoff A., Frisch M., Bayerlein M., Werner T. MatInspector and beyond: promoter analysis based on transcription factor binding sites//Bioinformatics.-2005.-21.-P. 2933-2942.
[20]
Kel A. E., Gossling E., Reuter I., Cheremushkin E., Kel-Margoulis O. V., Wingender E. MATCHTM: a tool for searching transcription factor binding sites in DNA sequences//Nucl. Acids Res.-2003.-31.-P. 3576-3579.
[21]
Sandelin A., Wasserman W. W., Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison//Nucl. Acids Res.-2004.-32, suppl. 1.-P. W249-W252.
[22]
Pestka S., Langer J. A., Zoon K. C., Samuel C. E. Interferons and their actions//Ann. Rev. Biochem.-1987.-56.-P. 727-777.
[23]
Pestka S., Krause C. D., Walter M. R. Interferons, interferon-like cytokines, and their receptors//Immunol. Revs.-2004.-202.-P. 8-32.
[24]
Sen G. C. Viruses and interferons//Annu. Rev. Microbiol.-2001.-55.-P. 255-281.
[25]
Stark G. R., Kerr I. M., Williams B. R. G., Silverman R. H., Schreiber R. D. How cells respond to interferons//Ann. Rev. Biochem.-1998.-67.-P. 227-264.
[26]
Horvath C. M. The Jak-STAT Pathway stimulated by interferon {alpha} or interferon {beta}//Sci. STKE.-2004.-260.-P. 10.
[27]
Fu X., Schindler C., Improta T., Aebersold R., Darnell J. E., Jr. The proteins of ISGF-3, the interferon {alpha}-induced transcriptional activator, define a gene family involved in signal transduction//Proc. Nat. Acad. Sci. USA.-1992.-89.-P. 7840-7843.
[28]
Kessler D. S., Veals S. A., Fu X. Y., Levy D. E. Interferon-alpha regulates nuclear translocation and DNA-binding affinity of ISGF3, a multimeric transcriptional activator//Genes and Develop.-1990.-4.-P. 1753-1765.
[29]
Curwen V., Eyras E., Andrews T. D., Clarke L., Mongin E., Searle S. M. J., Clamp M. The Ensembl automatic gene annotation system//Genome Res.-2004.-14.-P. 942-950.
[30]
Levy D. E., Kessler D. S., Pine R., Reich N., Darnell J. E., Jr. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control//Genes and Develop.-1988.-2.-P. 383-393.
[31]
Jin V. X., Leu Y. W., Liyanarachchi S., Sun H., Fan M., Nephew K. P., Huang T. H. M., Davuluri R. V. Identifying estrogen receptor {alpha} target genes using integrated computational genomics and chromatin immunoprecipitation microarray//Nucl. Acids Res.-2004.-32.-P. 6627-6635.
[32]
Vencio R., Koide T., Gomes S., de B. Pereira C. BayGO: Bayesian analysis of ontology term enrichment in microarray data//BMC Bioinformatics.-2006.-7.-P. 86.
[33]
Zhang B., Schmoyer D., Kirov S., Snoddy J. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies//BMC Bioinformatics.-2004.-5.-P. 16.