Biopolym. Cell. 2007; 23(3):202-214.
Oxidative DNA damage
1Skrypnyk N. V., 1Maslova O. O.
  1. Taras Shevchenko National University of Kyiv
    64, Volodymyrska Str., Kyiv, Ukraine, 01033

Abstract

Several characteristics of the basic types of oxidative DNA damage are analysed in the present work. They are as follows base and sugar modifications lesions, single-strand and double-strand breaks, apurinic/apyrimidinic sites and DNA-proteins cross-links. The chemical structure of the most investigated types of oxidative DNA damage is shown. The most common genotoxic agents (reactive oxygen species, free radicals, alkylating agents) are also discussed. The methods of identification and measurement of oxidative DNA damage are considered.
Keywords: oxidative stress, DNA damage, genotoxic agents

References

[1] Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17(10):1195-214.
[2] Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med. 1991;10(3-4):225-42.
[3] Epe B. DNA damage profiles induced by oxidizing agents. Rev Physiol Biochem Pharmacol. 1996;127:223-49.
[4] Epe B, Hegler J. Oxidative DNA damage: Endonuclease fingerprinting. Methods in Enzymol. 1994;122–31.
[5] Cadet J, Berger M, Douki T, Ravanat JL. Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol. 1997;131:1-87.
[6] Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313 (Pt 1):17-29.
[7] Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem. 1997;272(32):19633-6.
[8] Kulinskij VI. Reactive oxygen species and oxidative modification of macromolecules: use, harm and protection. Soros Education J. 1999;1:2-6.
[9] Cantor CR, Schimmel PR. Biophysical Chemistry: Part I: The Conformation of Biological Macromolecules (Their Biophysical Chemistry; PT. 1) 1980 365 p.
[10] Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527-605.
[11] Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361-70.
[12] Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res. 2001;477(1-2):7-21.
[13] Collins AR. Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am J Clin Nutr. 2005;81(1 Suppl):261S-267S.
[14] Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A. 2001;98(18):10469-74.
[15] Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis. 2001;22(9):1459-63.
[16] Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709-15.
[17] Halliwell B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am J Clin Nutr. 2000;72(5):1082-7.
[18] Pflaum M, Boiteux S, Epe B. Visible light generates oxidative DNA base modifications in high excess of strand breaks in mammalian cells. Carcinogenesis. 1994;15(2):297-300.
[19] Epe B, Pflaum M, Boiteux S. DNA damage induced by photosensitizers in cellular and cell-free systems. Mutat Res. 1993;299(3-4):135-45.
[20] Patrushev LI. Gene expression M.: Nauka, 2000. 818 p.
[21] Zhao C, Hemminki K. The in vivo levels of DNA alkylation products in human lymphocytes are not age dependent: an assay of 7-methyl- and 7-(2-hydroxyethyl)-guanine DNA adducts. Carcinogenesis. 2002;23(2):307-10.
[22] Stern LL, Mason JB, Selhub J, Choi SW. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev. 2000;9(8):849-53.
[23] Halford S, Rowan A, Sawyer E, Talbot I, Tomlinson I. O(6)-methylguanine methyltransferase in colorectal cancers: detection of mutations, loss of expression, and weak association with G:C>A:T transitions. Gut. 2005;54(6):797-802.
[24] Fortini P, Raspaglio G, Falchi M, Dogliotti E. Analysis of DNA alkylation damage and repair in mammalian cells by the comet assay. Mutagenesis. 1996;11(2):169-75.
[25] Xiao W, Samson L. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci U S A. 1993;90(6):2117-21.
[26] Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. Eur J Biochem. 2000;267(8):2135-49.
[27] Nakamura J, Swenberg JA. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999;59(11):2522-6.
[28] De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19(3):169-85.
[29] Kohn KW, Erickson LC, Ewig RA, Friedman CA. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry. 1976;15(21):4629-37.
[30] Boiteux S, O'Connor TR, Laval J. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO J. 1987;6(10):3177-83.
[31] Rosenquist TA, Zharkov DO, Grollman AP. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A. 1997;94(14):7429-34.
[32] Wilson DM 3rd, Thompson LH. Life without DNA repair. Proc Natl Acad Sci U S A. 1997;94(24):12754-7.
[33] Morland I, Rolseth V, Luna L, Rognes T, Bj?r?s M, Seeberg E. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 2002;30(22):4926-36.
[34] Kassie F, Parzefall W, Knasm?ller S. Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res. 2000;463(1):13-31.
[35] Santella RM. Immunological methods for detection of carcinogen-DNA damage in humans. Cancer Epidemiol Biomarkers Prev. 1999;8(9):733-9.
[36] Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990;87(12):4533-7.
[37] Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94(2):514-9.
[38] Anson RM, Hudson E, Bohr VA. Mitochondrial endogenous oxidative damage has been overestimated. FASEB J. 2000;14(2):355-60.
[39] Rydberg B, Lindahl T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1982;1(2):211-6.
[40] Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483-95.
[41] Jaruga P, Speina E, Gackowski D, Tudek B, Olinski R. Endogenous oxidative DNA base modifications analysed with repair enzymes and GC/MS technique. Nucleic Acids Res. 2000;28(6):E16.
[42] Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood). 2002;227(9):671-82.
[43] Loft S, M?ller P. Oxidative DNA damage and human cancer: need for cohort studies. Antioxid Redox Signal. 2006;8(5-6):1021-31.
[44] Peter H. Free radicals and human disease. CRC handbook of free radicals and antioxidants. 1989; 1: 209-21.
[45] Zurer I, Hofseth LJ, Cohen Y, Xu-Welliver M, Hussain SP, Harris CC, Rotter V. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis. 2004;25(1):11-9.
[46] Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffell DJ. Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J Investig Dermatol Symp Proc. 1996;1(2):136-42.
[47] Narasimhaiah R, Tuchman A, Lin SL, Naegele JR. Oxidative damage and defective DNA repair is linked to apoptosis of migrating neurons and progenitors during cerebral cortex development in Ku70-deficient mice. Cereb Cortex. 2005;15(6):696-707.
[48] Bohr VA, Stevnsner T, de Souza-Pinto NC. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene. 2002;286(1):127-34.
[49] Gao D, Wei C, Chen L, Huang J, Yang S, Diehl AM. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2004;287(5):G1070-7.
[50] M?ller-Vogt US, Maurer JE, Grabenbauer GG, Distel LV, Iro H, Steinhart H. Altered DNA repair capacity in young patients suffering from multiple cancers. Int J Mol Med. 2003;11(5):669-74.
[51] Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res. 2006;66(6):2881-4.
[52] Anderson KM, Jaruga P, Ramsey CR, Gilman NK, Green VM, Rostad SW, Emerman JT, Dizdaroglu M, Malins DC. Structural alterations in breast stromal and epithelial DNA: the influence of 8,5'-cyclo-2'-deoxyadenosine. Cell Cycle. 2006;5(11):1240-4.
[53] Malins DC, Johnson PM, Wheeler TM, Barker EA, Polissar NL, Vinson MA. Age-related radical-induced DNA damage is linked to prostate cancer. Cancer Res. 2001;61(16):6025-8.
[54] Dunkern TR, Kaina B. Cell proliferation and DNA breaks are involved in ultraviolet light-induced apoptosis in nucleotide excision repair-deficient Chinese hamster cells. Mol Biol Cell. 2002;13(1):348-61.
[55] Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847-54.
[56] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415-28.
[57] Singal R, Ginder GD. DNA methylation. Blood. 1999;93(12):4059-70.
[58] Sinha RP, H?der DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1(4):225-36.
[59] Sekiguchi M, Tsuzuki T. Oxidative nucleotide damage: consequences and prevention. Oncogene. 2002;21(58):8895-904.