Biopolym. Cell. 2007; 23(2):93-99.
Molecular and Cell Biotechnologies
The development of DNA-vaccine against classical swine fever
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Institute of Veterinary Medicine, NAAS of Ukraine
30, Donetska Str., Kyiv, Ukraine, 03151
Abstract
The development of a DNA-vaccine against classical swine fever
(CSF) is a perspective direction, because it gives an opportunity to
develop a marker vaccine due to use of a part of protective antigen
molecule, and to induce effectively both cellular and humoral
immune response. In this study a recombinant plasmid, containing
the fragment of E2 gene of CFS virus (CSFV) in eukaryotic
expression vector, has been developed. It has been demonstrated
that the fragment of E2 protein of CSFV is expressed in CHO-Kl
cells from the developed recombinant plasmid pTR-BKneo , and we
suggest that the protein possesses the post-translational modiÂfications. The data obtained are in favor of the created model
DNA-vaccine able to induce humoral immune response to fragment
of E2 protein of CSFV.
Keywords: CSFV, DNA-vaccine, E2 glycoprotein of CSFV, immunization, humoral immune response
Full text: (PDF, in English) (PDF, in Ukrainian)
References
[1]
Dong XN, Chen YH. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine. 2007;25(2):205-30.
[2]
Sambrook J, Fritsch EE, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Lab. press, 1989. 625 p.
[3]
Current protocols in molecular biology. Eds F. M. Ausubel. New York: J. Willey & Sons, 1997. Vol. 1: 1.8.1. 1.8.3.
[4]
Catalogue Russian cell culture collection (RCCC). St. Petersburg; OMSK, 1999. 33 p.
[5]
Toporova OK, Novikova SN, Lihacheva LI, Suhorada OM, Ruban TA, Kozel JA, Irodov DM, Kordium VA. Non-viral gene delivery of human apoA1 into mammalian cells in vitro and in vivo. Biopolym Cell. 2004; 20(1-2):25-32.
[6]
Deriabin OM, Deriabina OG, Kulinich RM, Reznik VS. The protective properties of the recombinant E2 protein of the classical swine fever expressed in E.coli. The Herald of the Belaya Tserkov National Agrarian University. 2005; Iss 31: 151-8.
[7]
Immunological Methods. I. Lefkovits, B. Pernis, Eds. Academic Press, New York, 1979; 467 p
[8]
Bollag DM, Rozycki DM, Edelstein SJ. Protein methods. New York, 1996. 415 p.
[9]
Fisher RA. Statistical methods for researchers. M.: Gosstatizdat, 1958. 268 p.
[10]
van Rijn PA, Miedema GK, Wensvoort G, van Gennip HG, Moormann RJ. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J Virol. 1994;68(6):3934-42.
[11]
Andrew ME, Morrissy CJ, Lenghaus C, Oke PG, Sproat KW, Hodgson AL, Johnson MA, Coupar BE. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine. 2000;18(18):1932-8.
[12]
Hammond JM, Jansen ES, Morrissy CJ, Goff WV, Meehan GC, Williamson MM, Lenghaus C, Sproat KW, Andrew ME, Coupar BE, Johnson MA. A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Vet Microbiol. 2001;80(2):101-19.
[13]
Wienhold D, Armengol E, Marquardt A, Marquardt C, Voigt H, Büttner M, Saalmüller A, Pfaff E. Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Vet Res. 2005;36(4):571-87.
[14]
Markowska-Daniel I, Collins RA, Pejsak Z. Evaluation of genetic vaccine against classical swine fever. Vaccine. 2001;19(17-19):2480-4.
[15]
Yu X, Tu C, Li H, Hu R, Chen C, Li Z, Zhang M, Yin Z. DNA-mediated protection against classical swine fever virus. Vaccine. 2001;19(11-12):1520-5.
[16]
Kirilenko SD, Deriabin OM, Kirilenko OL, Deriabina EG, Busol VO. Cloning and overexpression of the part of envelope protein El gene of classical swine fever virus (Strain Shi-Min) in Escherichia coli. Biopolym Cell. 1996; 12(5):93-9.
[17]
Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 1985;41(2):521-30.
[18]
Foecking MK, Hofstetter H. Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene. 1986;45(1):101-5.
[19]
Xin KQ, Ooki T, Jounai N, Mizukami H, Hamajima K, Kojima Y, Ohba K, Toda Y, Hirai S, Klinman DM, Ozawa K, Okuda K. A DNA vaccine containing inverted terminal repeats from adeno-associated virus increases immunity to HIV. J Gene Med. 2003;5(5):438-45.
[20]
Chikhlikar P, Barros de Arruda L, Agrawal S, Byrne B, Guggino W, August JT, Marques ET Jr. Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8(+) responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology. 2004;323(2):220-32.
[21]
Rümenapf T, Unger G, Strauss JH, Thiel HJ. Processing of the envelope glycoproteins of pestiviruses. J Virol. 1993;67(6):3288-94.
[22]
Pokholenko IO, Titok TG, Sukhorada OM, Ruban TA. Development of model DNA-vaccine. Biopolym Cell. 2005; 21(3):270-274.
[23]
Wolff JA, Dowty ME, Jiao S, Repetto G, Berg RK, Ludtke JJ, Williams P, Slautterback DB. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J Cell Sci. 1992;103 ( Pt 4):1249-59.
[24]
Budker V, Budker T, Zhang G, Subbotin V, Loomis A, Wolff JA. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med. 2000;2(2):76-88.