Biopolym. Cell. 2007; 23(1):21-27.
Molecular and Cell Biotechnologies
Endophytic bacteria from potato in vitro activated by exogenic non-pathogenic bacteria
- Institute of Agroecology of NAAS
12 Metrologichna Str., Kyiv, Ukraine, 03680 - Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03680 - Institute for Potato Research UAAS
22 Chkalov Str., PO Nemishaeve, Borodianka district, Kyiv region, Ukraine, 07853
Abstract
The results suggest that potato in vitro supports diverse bacterial endophytes. The community composition of the culturable component of the microflora was remarkably different from that revealed by culture-independent method. Introduction of Pseudomonas fluorescens IMBG163 into potato plant tissue resulted in essential rise of endophytic bacterial species number, however, in the further cloning their number was reduced. Endophytic isolates from potato varieties Zagadka and Nigru, induced by the rhizobacterium, exhibited beneficial for plant characters.
Keywords: endophytic bacteria, potato in vitro, biotic stressor, Pseudomonas fluorescens IMBG163
Full text: (PDF, in English) (PDF, in Ukrainian)
References
[1]
Rosenblueth M, Mart?nez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact. 2006;19(8):827-37.
[2]
Kozyrovska NO. Molecular and genetic aspects of external and internal colonization plants by beneficial bacteria. Biopolym Cell. 2001; 17(1):20-8.
[3]
Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol. 2001;67(6):2469-75.
[4]
Ara?jo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol. 2002;68(10):4906-14.
[5]
Pirttil? AM, Pospiech H, Laukkanen H, Myllyl? R, Hohtola A. Seasonal variations in location and population structure of endophytes in buds of Scots pine. Tree Physiol. 2005;25(3):289-97.
[6]
Sorochinskiy BV, Kozyrovska NO. Biotechnological aspects of phytoremediation of the environment of radionuclide contamination. Agrobiotekhnologiya. 1998; 2: 123-30.
[7]
Verma SC, Ladha JK, Tripathi AK. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol. 2001;91(2-3):127-41.
[8]
Caballero-Mellado J, Mart?nez-Aguilar L, Paredes-Valdez G, Santos PE. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol. 2004;54(Pt 4):1165-72.
[9]
Normander B, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol. 2000;66(10):4372-7.
[10]
Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol. 2002;48(9):772-86.
[11]
Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol. 2004;50(4):239-49.
[12]
Garbeva P, Overbeek LS, Vuurde JW, Elsas JD. Analysis of Endophytic Bacterial Communities of Potato by Plating and Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA Based PCR Fragments. Microb Ecol. 2001;41(4):369-383.
[13]
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59(1):143-69.
[14]
Reiter B, Pfeifer U, Schwab H, Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol. 2002;68(5):2261–8.
[15]
Kovalchuk MV, Lytvynenko TL, Kononuchenko OV, Voznyuk TM, Rymar SYu, Negrutska VV, Kozyrovska NO. Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots. Biopolym Cell. 2004; 20(6):530-4.
[16]
King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44(2):301-7.
[17]
Podolich OV, Kovalchuk MV, Lytvynenko TL, Kononuchenko OV, Kozyrovska NO, Petyukh GP. The features of in vitro potato plants colonization by bacteria Pseudomonas sp. IMBG163. Agroekologichnyy Zhurnal. 2005; 2: 61-4.
[18]
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Proc Int Citrus Symp. 1969; 3: 1155-61.
[19]
Romanovskaia VA, Stoliar SM, Malashenko IuR, Shatokhina ES. [The effect of long-acting radiation on the diversity of heterotrophic bacteria in the soils of a 10-kilometer area around the Chernobyl Atomic Electric Power Station]. Mikrobiol Z. 1996;58(5):3-12.
[20]
Starr MP, Chatterjee AK, Starr PB, Buhanan GE. Enzymatic degradation of polygalacturonic acid by Yersinia and Klebsiella species in relation to clinical laboratory procedures. J Clin Microbiol. 1977; 6: 379-86.
[21]
Miller JH. Experiments in molecular genetics. Cold Spring Harbor Laboratory, 1972, 466 p.
[22]
Wood PJ. The use of dye-polysaccharide interactions in β-D-glucanase assay. Carbohydr Res. 1981; 94(2):19-23.
[23]
Tang YW, Bonner J. The enzymatic inactivation of indoleacetic acid; some characteristics of the enzyme contained in pea seedlings. Arch Biochem. 1947;13(1):11-25.
[24]
Kovalchuk MV, Negrutska VV, Kozyrovska NO. Features of some pseudomonas as candidates for creation a new drugs class by the"Dual" technology. Agroekologichnyy Zhurnal. 2004; 2: 41-45.
[25]
Sambrook J, Fritisch EF, Maniatis T. Molecular cloning. A laboratory manual. New York: Cold Spring Harbor Lab. press, 1989. 1962 p.
[26]
Liu WT, Marsh TL, Cheng H, Forney LJ. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol. 1997;63(11):4516-22.
[27]
Wilson M, Hirano SS, Lindow SE. Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf . Appl Environ Microbiol. 1999;65(4):1435-43.
[28]
Doronina NV, Ivanova EG, Suzina NF, Trotsenko IuA. [Methanotrophs and methylobacteria are found in woody plant tissues within a winter period]. Mikrobiologiia. 2004;73(6):817-24.
[29]
Zarnowski R, Felske A, Ellis RJ, Geuns JM, Pietr SJ. A Methylobacterium-like organism from algal crusts covering silicone rubber electric insulators in Africa. J Appl Microbiol. 2002;93(6):1012-9.
[30]
Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol. 2004;70(5):2667-77.
[31]
Okubara PA, Paulitz TC. Root defense responses to fungal pathogens: a molecular perspective. Plant and Soil. 2005; 274(1-2): 215-26.
[32]
Podolich OV, Litvinenko TL, Voznyuk TM, Kovalchuk MV, Kozyrovska NO. Identifying groups endophitous bacteria in aseptic potato plants after inoculation Pseudomonas sp. IMBG163. Nauk Visn Uzhgorod Univ. 2006; (18):165-70.