Biopolym. Cell. 2006; 22(1):29-32.
Structure and Function of Biopolymers
Eukaryotic elongation factor 1A disintegrates aggregates of phenylalanyl-tRNA synthetase
1Lukash T. O.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Translation elongation factor 1A (eEF1A) provides binding and transporting of the appropriate codon-specified aminoacyl-tRNA to the aminoacyl site of the ribosome. Two active tissue-specific isoforms of eEF1A have been identified in mammals. Herewith we report that two isoforms of eEF1A disintegrate the aggregates of phenylalanyl-tRNA synthetase like molecular chaperones which are involved in protein folding and renaturation after stress.
Keywords: translation elongation factor 1A, phenylalanyl-tRNA synthetase, chaperone, aggregation, thermodenaturation

References

[1] Negrutskii BS, El'skaya AV. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol. 1998;60:47-78.
[2] Khalyfa A, Bourbeau D, Chen E, Petroulakis E, Pan J, Xu S, Wang E. Characterization of elongation factor-1A (eEF1A-1) and eEF1A-2/S1 protein expression in normal and wasted mice. J Biol Chem. 2001;276(25):22915-22.
[3] Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347(6292):494-6.
[4] Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E. Microtubule severing by elongation factor 1 alpha. Science. 1994;266(5183):282-5.
[5] Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349-84.
[6] Kudlicki W, Coffman A, Kramer G, Hardesty B. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem. 1997;272(51):32206-10.
[7] Caldas TD, El Yaagoubi A, Richarme G. Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem. 1998;273(19):11478-82.
[8] Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999;79(2):425-49.
[9] Lukash TO, Turkovskaya GV, Negrutskii BS, Elskaya AV. Renaturation of phenylalanyl-tRNA synlhetase by translation elongation factor eEF1A. Biopolym Cell. 2003; 19(4):350-4.
[10] Lukash TO, Turkivska HV, Negrutskii BS, El'skaya AV. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases. Int J Biochem Cell Biol. 2004;36(7):1341-7.
[11] Pailliez JP, Waller JP. Phenylalanyl-tRNA synthetases from sheep liver and yeast. Correlation between net charge and binding to ribosomes. J Biol Chem. 1984;259(24):15491-6.
[12] Ovcharenko GV, Ivanov LL. Methods for determining the enzymatic activity of aminoacyl-tRNA synthetases. Methods of molecular biology. Kiev: Naukova dumka, 1979: 133-9.
[13] Shalak VF, Budkevich TV, Negrutski? BS, El'skaia AV. A fast and effective method for purification of elongation factor 1 alpha from rabbit liver. Ukr Biokhim Zh. 1997;69(2):104-9.
[14] Irvin JD, Hardesty B. Binding of aminoacyl transfer ribonucleic acid synthetases to ribosomes from rabbit reticulocytes. Biochemistry. 1972;11(10):1915-20.
[15] Bobkova EV, Vol'fson AD, Ankilova VN, Lavrik OI. Separation and comparative characteristics of subunits of phenylalanyl-tRNA synthetase from Escherichia coli MRE-600 and Thermus thermophilus HB8. Biokhimiia. 1990;55(3):525-33.
[16] Damaschun G, Damaschun H, Gast K, Zirwer D. Denatured states of yeast phosphoglycerate kinase. Biochemistry (Mosc). 1998;63(3):259-75.
[17] Moor N, Linshiz G, Safro M. Cloning and expression of human phenylalanyl-tRNA synthetase in Escherichia coli: comparative study of purified recombinant enzymes. Protein Expr Purif. 2002;24(2):260-7.