Biopolym. Cell. 2005; 21(5):446-453.
Bioinformatics
Analysis of unstructured regions of human cytoplasmic tyrosyl-tRNA synthetase by methods of bioinformatics
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
The prediction of unstructured regions of mammalian cytoplasmic tyrosyl-tRNA synthetase is carried out by bioinformatics methods using 15 web-servers. High probability of unfolded state for flexible “KMSKS» loop of catalytic centre (residue Pro216-Lys231), which getting certain conformation during catalytic act is shown. For the region of intermodule linker (residues Asp343-Glu359) the highest probability of its unstructured state is shown. The comparison of these data with B-factor values for Ca-atoms of crystallographic structures of N- and C-terminal modules shows a strong correlation between the bioinformatics and X-ray analyses data. The presence of flexible intermodular linker is a characteristic feature of proteins which contain the EMAP II-like-terminal module. The hypothesis is proposed about a possible conformational rearrangement of this linker region which may be essential upon the complex formation between these proteins and tRNAs.
Keywords: tyrosyl-tRNA synthetase, disordered regions, bioinformatics
Full text: (PDF, in Ukrainian)
References
[1]
Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999;293(2):321-31. Review.
[2]
Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6(3):197-208. Review.
[3]
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. Intrinsically disordered protein. J Mol Graph Model. 2001;19(1):26-59.
[4]
Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 2002;11(4):739-56.
[5]
Dyson HJ, Wright PE. Elucidation of the protein folding landscape by NMR. Methods Enzymol. 2005;394:299-321.
[6]
Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins. 2000;41(3):415-27.
[7]
Del?age G, Blanchet C, Geourjon C. Protein structure prediction. Implications for the biologist. Biochimie. 1997;79(11):681-6.
[8]
Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure. 2003;11(11):1453-9.
[9]
Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT. The DISOPRED server for the prediction of protein disorder. Bioinformatics. 2004;20(13):2138-9.
[10]
Cheng J, Randall AZ, Sweredoski MJ, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res. 2005;33(Web Server issue):W72-6.
[11]
MacCallum RM. Striped sheets and protein contact prediction. Bioinformatics. 2004;20 Suppl 1:i224-31.
[12]
Kleeman TA, Wei D, Simpson KL, First EA. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997;272(22):14420-5.
[13]
Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1998; 14(4):349-59.
[14]
Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci U S A. 2002;99(24):15369-74.
[15]
Yang XL, Otero FJ, Skene RJ, McRee DE, Schimmel P, Ribas de Pouplana L. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Proc Natl Acad Sci U S A. 2003;100(26):15376-80.
[16]
Yang X-L, Liu J, Skene RJ, McRee DE, Schimmel P. Crystal Structure of an EMAP-II-Like Cytokine Released from a Human tRNA Synthetase. Helv Chim Acta. 2003;86(4):1246–57.
[17]
Gnatenko DV, Korneliuk AI, Kurochkin IV, Ribkinska TA, Matsuka GKh. [Isolation and characteristics of functionally active proteolytically modified forms of tyrosyl-tRNA synthetase from bovine liver]. Ukr Biokhim Zh. 1991;63(4):61-7.
[18]
Ivakhno SS, Kornelyuk AI. Cytokine-like activities of some aminoacyl-tRNA synthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis. Exp Oncol. 2004;26(4):250-5.
[19]
Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, Iakoucheva LM, Cortese MS, Lawson JD, Brown CJ, Sikes JG, Newton CD, Dunker AK. DisProt: a database of protein disorder. Bioinformatics. 2005;21(1):137-40.
[20]
Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res. 2003;31(13):3701-8.
[21]
Doszt?nyi Z, Csizm?k V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol. 2005;347(4):827-39.
[22]
Liu J, Rost B. NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res. 2003;31(13):3833-5.
[23]
Salamov AA, Solovyev VV. Protein secondary structure prediction using local alignments. J Mol Biol. 1997;268(1):31-6.
[24]
Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting Protein Disorder for N-, C-, and Internal Regions. Genome Inform Ser Workshop Genome Inform. 1999;10:30-40.
[25]
Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins. 2001;42(1):38-48.
[26]
Coeytaux K, Poupon A. Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics. 2005;21(9):1891-900.
[27]
Thomson R, Esnouf R. Prediction of Natively Disordered Regions in Proteins Using a Bio-basis Function Neural Network. Lecture Notes in Computer Science. 2004;108–16.