Biopolym. Cell. 2005; 21(5):400-406.
Structure and Function of Biopolymers
Investigation of non-canonical complexes of eukaryotic elongation factor 1A with tRNATyr and tyrosyl-tRNA synthetase. Role of different domains of the synthetase in interaction with tRNA.
1Futernyk P. V., 2Olszak K., 2Przykorska A., 1Kornelyuk A. I., 1Negrutskii B. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Biochemistry and Biophysics, Polish Academy of Sciences
    5a, Pawinskiego, Warsaw, Poland, 02-106

Abstract

A role of different domains of bovine tyrosil-tRNA synthetase (TyrRS) in the interaction with homologous tRNA has been determined by the method of tRNA band retardation in polyacrylamide gel. The site of TyrRS responsible for the binding of tRNATyr is found to be formed mostly by the catalytic domain of TyrRS (TyrRS-ΔC). At the same time, the full-length TyrRS is found to bind tRNA stronger than TyrRS-DC. Cytokine-like C-domain of TyrRS also has tRNA-binding properties but much weaker than TyrRS-ΔC suggesting its possible involvement in tRNA binding as well. The formation of non-canonical ternary complex of tRNATyr and eEF1A*GDP has been shown. Also, the formation of quaternary complex of eEF1A*GDP*tRNATyr*TyrRS is detected. The catalytic domain of TyrRS appears to be responsible for this interaction, because the TyrRS-DC also is found to form the complex with eEF1A*GDP*tRNATyr. These data support the universality of the tRNA channeling mechanism.
Keywords: eukaryotic elongation factor 1A, tRNATyr, tyrosyl-tRNA synthetase

References

[1] Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci U S A. 1991;88(11):4991-5.
[2] Negrutskii BS, El'skaya AV. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol. 1998;60:47-78.
[3] Negrutskii BS, Budkevich TV, Shalak VF, Turkovskaya GV, El'Skaya AV. Rabbit translation elongation factor 1 alpha stimulates the activity of homologous aminoacyl-tRNA synthetase. FEBS Lett. 1996;382(1-2):18-20.
[4] Petrushenko ZM, Negrutskii BS, Ladokhin AS, Budkevich TV, Shalak VF, El'skaya AV. Evidence for the formation of an unusual ternary complex of rabbit liver EF-1alpha with GDP and deacylated tRNA. FEBS Lett. 1997;407(1):13-7.
[5] Futernyk PV, Pogribna AP, Petrushenko ZM, Negrutski BS, El'skaya GV. Investigation of the complexes of elongation factor 1A with tRNASer and seryl-tRNA synthetase. Biopolym Cell. 2004; 20(1-2):17-23.
[6] Petrushenko ZM, Budkevich TV, Shalak VF, Negrutskii BS, El'skaya AV. Novel complexes of mammalian translation elongation factor eEF1A.GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling. Eur J Biochem. 2002;269(19):4811-8.
[7] Levanets OV, Naidenov VG, Woodmaska MI, Matsuka GH, Kornelyuk AI. Cloning of cDNA encoding C-terminal part of mammalian tyrosyl-tRNA synthetase using of PCR-amplified radioactive probe. Biopolym Cell. 1997; 13(2):121-6.
[8] Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[9] Kleeman TA, Wei D, Simpson KL, First EA. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997;272(22):14420-5.
[10] Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8.
[11] Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-72.
[12] Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147-51.
[13] Golub AG, Odynets KA, Nyporko AYu, Konelyuk AI. Structure modeling of the COOH-terminal cytokine-like module of the mammalian cytoplasmic tyrosyl-tRNA synthetase. Biopolym. Cell. 2000; 16(6):515-24.
[14] Odynets KA, Bazylevskyi OE, Kornelyuk AI. Homology modeling of structure of NH2-terminal module of mammalian (Bos taurus) tyrosyl-tRNA synthetase. Biopolym Cell. 2002; 18(6):547-50.
[15] Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci U S A. 2002;99(24):15369-74.
[16] Yang X-L, Liu J, Skene RJ, McRee DE, Schimmel P. Crystal structure of an EMAP-II-like cytokine released from a human tRNA synthetase. Helv Chim Acta. 2003;86(4):1246-57.
[17] Dubrovsky AL, Brown Jn, Kornelyuk AI, Murray JC, Matsuka GKh. Bacterial expression of full-length and truncated forms of cytokine EMAP-2 and cytokine-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 2000; 16(3):229-35.
[18] Brunngraber EF. A simplified procedure for the preparation of "soluble" RNA from rat liver. Biochem Biophys Res Commun. 1962;8:1-3.
[19] Silberklang M, Gillum AM, RajBhandary UL. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58-109.
[20] Keith G, Pixa G, Fix C, Dirheimer G. Primary structure of three tRNAs from brewer's yeast: tRNAPro2, tRNAHis1 and tRNAHis2. Biochimie. 1983;65(11-12):661-72.
[21] Korneliuk AI, Kurochkin IV, Matsuka GKh. Tyrosyl-tRNA synthetase from the bovine liver. Isolation and physico-chemical properties. Mol Biol (Mosk). 1988;22(1):176-86.
[22] Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 2002;21(14):3829-40.
[23] Swairjo MA, Morales AJ, Wang CC, Ortiz AR, Schimmel P. Crystal structure of trbp111: a structure-specific tRNA-binding protein. EMBO J. 2000;19(23):6287-98.
[24] Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996;15(19):5437-48.
[25] Kim Y, Shin J, Li R, Cheong C, Kim K, Kim S. A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. J Biol Chem. 2000;275(35):27062-8.
[26] Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem. 2001;276(26):23769-76.
[27] Golub A, Petrushenko Z, Odynets K, Dubrovsky A, Rozhko O, Matsuka G, Solecka K, Olszak K, Przykorska A, Kornelyuk A. Cytokine-like C-terminal module of mammalian tyrosyl-tRNA synthetase reveals structure-specific tRNA binding: Computational docking modeling and footprint analysis. Aminoacyl-tRNA synthetases in biology, medicine, and evolution. Asilomar, 2002: 116.
[28] Dreher TW, Uhlenbeck OC, Browning KS. Quantitative assessment of EF-1alpha.GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu. J Biol Chem. 1999;274(2):666-72.
[29] Gnatenko DV, Kornelyuk AI, Kurochkin IV, Matsuka GH. High molecular weight complex of tyrosyl-tRNA synthetase from bovine liver. Biopolym Cell. 1991; 7(1):63-9.