Biopolym. Cell. 2003; 19(6):499-503.
Structure and Function of Biopolymers
Intramolecular structure and oxidative modification of haemoglobin major fractions of some mammalia and fishes representatives
1Konoshenko S. V., 1Gidulyanov A. A.
  1. V. I. Vernadsky Taurida National University
    4, Vernadsky Ave., Simferopol, Crimea, Ukraine, 95007

Abstract

Philogenetic particularities of a total volume of hydrophobic cavities and hydrophobicitiy of molecular central pans of mammalian and fish haemoglobins have been revealed. It has been determined that the vertebrates' haemoglobins undergo oxidative modification in erythrocytes, the level of which is species specific and depends on the protein intramolecular structure. A direct relationship between the total volume of molecular hydrophobic cavities of mammalian haemoglobins and the level of oxidative modification base products has been shown under initiation of the oxidative processes. A reverse relation between corresponding indices has been found for fishes. haemoglobins before initiation of oxidative processes.

References

[1] Burlakova EB, Khrapova NG. The peroxide oxidation of membrane lipids and natural antioxidants. Russ Chem Rev. 1985; 54 (9):907-17.
[2] Vladimirov YuA, Olenev VI, Suslova TV, Potapenko AI. Mechanism of lipid peroxidation and its effect on the membrane. Itogi nauki i tekhniki. Biofizika. 1975;(5):56-60.
[3] Kulagin IuI, Levachev MM, Siurin AA, Lupinovich VL. [Peroxidation and features of fatty acid composition of cell membrane lipids in patients with hypertension]. Vopr Med Khim. 1989;35(3):129-32.
[4] Menshikova EB, Zenkov NK. Oxidative stress in inflammation. Usp Sovrem Biol. 1997; 117(2):155-69.
[5] Peskin AV. Interaction of reactive oxygen species with DNA. A review. Biochemistry (Mosc). 1997;62(12):1341-7.
[6] Dubinina EE, Burmistrov SO, Khodov DA, Porotov IG. [Oxidative modification of human serum proteins. A method of determining it]. Vopr Med Khim. 1995;41(1):24-6.
[7] Drabkin DL. A simplified technique for a large scale crystallization of human oxyhemoglobin; isomorphous transformations of hemoglobin and myoglobin in the crystalline state. Arch Biochem. 1949;21(1):224-32.
[8] Azhitski? GIu, Bagdasar'ian SN. [Possibility of isolation of monomeric immunochemically pure serum albumin]. Lab Delo. 1975;(12):712-4.
[9] Davis BJ. Disc electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci. 1964;121:404-27.
[10] Ostolovski? EM, Botsianski? AD, Zadorozhny? BA. [Study of the structure of mammalian serum albumin using fluorescent probes]. Biofizika. 1988;33(2):356-8.
[11] Izmaylova VN, Rebinder PA. Structuring in protein systems. Moscow, Nauka, 1974; 329 p.
[12] Konoshenko SV, Bayala Isso. Comparison characteristic of intramolecular mobility and affinity to oxygen of hemoglobins in vertebrate line. Biopolym Cell. 1994; 10(2):72-8.