Biopolym. Cell. 2002; 18(3):205-218.
Structure and Function of Biopolymers
The nature and possible mechanisms of potential mutations formation due to the appearance of tymine dimers after irradiating two-stranded DNA by ultra-violet light
1Grebneva H. A.
  1. Donetsk Institute for Physics and Engineering named after O. O. Galkin, NAS of Ukraine
    72, R. Luxembourg Str., Donetsk, Ukraine, 83114


Mutagenesis caused by UV radiation has been proposed. The main damages resulting in transitions, transversions, frameshift mutations and complex mutations are supposed to be the changes in tautomeric state of the bases affecting their pairing. A model of demoting these rare tautomeric base forms is proposed and grounded for the UV-irradiated DNA. Strong generation of oscillations at thermal deexcitation of DNA, absorbing UV-quantum from the triplet electron energy level, causes the changes in length of hydrogen bonds between the bases. Such changes can occur in the base pairs forming dimmers of the cyclobutane pyrimidine type, as well as in the pairs of bases which are not a part of the dinner. We consider the dimers as mutations only when tautomeric state of the bases is changed. It is one of the basic differences between the model proposed and that generally used, according to which all the dimers are supposed to be identical and only DNA-polymerase is sometimes mistaken, including uncomplementary bases into DNA randomly.


[1] Dubinin NP. Potential changes in the DNA and mutation. M.: Nauka, 1978; 246 p.
[2] Auerbach C. Mutation research: problems, results and perspectives. 1976; London: Chapman & Hall. 504 p.
[3] Setlow RB. Photoproducts in DNA irradiated in vivo.Photochem Photobiol. 1968; 7(6): 643-9.
[4] Kusewitt DE, Budge CL, Ley RD. Reduced frequency of UVR-induced mutations in mammalian cell with endonuclease V-inhanced pyrimidine dimer repair. Photochem Photobiol. 1993; 57, Suppl: 56.
[5] Armstrong JD, Kunz BA. Photoreactivation implicates cyclobutane dimers as the major promutagenic UVB lesions in yeast. Mutat Res. 1992;268(1):83-94.
[6] Kim JK, Alderfer JL. Conformational variations of the cis-syn cyclobutane-type photodimer in DNA and RNA. J Biomol Struct Dyn. 1992;9(4):705-18.
[7] Pfeifer GP, Drouin R, Riggs AD, Holmquist GP. In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc Natl Acad Sci U S A. 1991;88(4):1374-8.
[8] Horsfall MJ, Lawrence CW. Accuracy of replication past the T-C (6-4) adduct. J Mol Biol. 1994;235(2):465-71.
[9] Gale JM, Smerdon MJ. UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem Photobiol. 1990;51(4):411-7.
[10] Hejmadi V, Stevenson C, Kumar S, Davies RJ. Alkali-labile photolesions mapping to purine sites in ultraviolet-irradiated DNA. Photochem Photobiol. 1994;59(2):197-203.
[11] Brash DE, Haseltine WA. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982;298(5870):189-92.
[12] Sage E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol. 1993;57(1):163-74.
[13] Seidman MM, Levy DD, Parris CN. The problem of sequence context effects of UV mutagenesis. Photochem Photobiol. 1994;59, Spec. Iss:5.
[14] Parris CN, Levy DD, Jessee J, Seidman MM. Proximal and distal effects of sequence context on ultraviolet mutational hotspots in a shuttle vector replicated in xeroderma cells. J Mol Biol. 1994;236(2):491-502.
[15] Becker MM, Wang Z. Origin of ultraviolet damage in DNA. J Mol Biol. 1989;210(3):429-38.
[16] Lipi?ski J. Effect of the base sequence in DNA on double proton transfer in the guanine-cytosine and the adenine-thymine pairs. Chem Phys Lett. 1988;145(3):227–31.
[17] Tarasov VA. Molecular mechanisms of repair and mutagenesis. M.: Nauka, 1982. 226 p.
[18] Levine JG, Schaaper RM, DeMarini DM. Complex frameshift mutations mediated by plasmid pKM101: mutational mechanisms deduced from 4-aminobiphenyl-induced mutation spectra in Salmonella. Genetics. 1994;136(3):731-46.
[19] Taylor JS, Garrett DS, Brockie IR, Svoboda DL, Telser J. 1H NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CGTATTATGC).d(GCATAATACG). Biochemistry. 1990;29(37):8858-66.
[20] Korolev VG. Modeling of radiation damage genetic material. Radiation mutagenesis and its role in the evolution and selection. M: Nauka, 1987;52-66.
[21] Benerjee SK, Borden A, Christensen RB, LeClerc JE, Lawrence CW. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lession in uninduced cell. J Bacteriol. 1990; 172(4): 2105-12.
[22] Horsfall MJ, Lawrence CW. Accuracy of replication past the T-C (6-4) adduct. J Mol Biol. 1994;235(2):465-71.
[23] Armstrong JD, Kunz BA. Site and strand specificity of UVB mutagenesis in the SUP4-o gene of yeast. Proc Natl Acad Sci U S A. 1990;87(22):9005-9.
[24] Spivak G, Hanawalf PC. Repair of replicated DNA in an active gene in UV irradiated CHO cells. Environ Mol Mutagen. 1990; 15(Suppl. 17): 56.
[25] Jonczyk P, Fijalkowska I, Ciesla Z. Overproduction of the epsilon subunit of DNA polymerase III counteracts the SOS mutagenic response of Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(23):9124-7.
[26] Taylor JS. DNA, sunglight and stin cancer: 15th 1 UP AC Symp. Photochem. (Prague. 17-22 July, 1994). Pure Appl Chem. 1995; 67(1): 183-190.
[27] Hagen U. Biochemical aspects of radiation biology. Experientia. 1989;45(1):7-12.
[28] Topal MD, Fresco JR. Complementary base pairing and the origin of substitution mutations. Nature. 1976;263(5575):285-9.
[29] Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77-84.
[30] Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993;365(6443):274-6.
[31] Lawrence CW, Banerjee SK, Borden A, LeClerc JE. T-T cyclobutane dimers are misinstructive, rather than non-instructive, mutagenic lesions. Mol Gen Genet. 1990;222(1):166-8.
[32] LeClerc JE, Borden A, Lawrence CW. The thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli. Proc Natl Acad Sci U S A. 1991;88(21):9685-9.
[33] Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol. 1985;32:115-54.
[34] Lawrence CW, Christensen RB. The mechanism of untargeted mutagenesis in UV-irradiated yeast. Mol Gen Genet. 1982;186(1):1-9.
[35] Lawrence CW, LeClerc JE, Christensen JR, Christensen RB, Tata PV, Benerjee SK. Laci sequence changes and the machanisms of UV mutagenesis in E. coli II Radiat Res. 1987; 2: 538-43.
[36] Vresler SE. About solved and unsolved problems of mutagenesis and repair. Damage and DNA repair. Pushchino. Publ Sci. center biol. Research USSR in Pushchino, 1980; 204 p.
[37] Drake JW. Ultraviolet mutagenesis in bacteriophage T-4. I. Irradiation of extracellular phage particles. J Bacteriol. 1966;91(5):1775-80.
[38] Meistrich ML, Drake JW. Mutagenic effects of thymine dimers in bacteriophage T4. J Mol Biol. 1972;66(1):107-14.
[39] Sora S, Panzeri L, Magni GE. Molecular specificity of 2-aminopurine in Saccharomyces cerevisiae. Mutat Res. 1973;20(2):207-13.
[40] DeMarini DM, Shelton ML, Stankowski LF. Mutation spectra in Salmonella of sunlight, white fluorescent light, and light from tanning salon beds: induction of tandem mutations and role of DNA repair. Mutat Res Fundam Mol Mech Mutagen. 1995;327(1-2):131–49.
[41] Watson JD, Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953;18:123-31.
[42] L?wdin P-O. Proton tunneling in DNA and its biological implications. Rev Mod Phys. 1963;35(3):724–32.
[43] Danilov VI, Kventsel GF. Electronic submission to the theory of point mutations. Kiev: Naukova Dumka, 1971; 83 p.
[44] Katritzky AR, Baykut G, Rachwal S, Szafran M, Caster KC, Eyler J. The tautomeric equilibria of thio analogues of nucleic acid bases. Part 1. 2-Thiouracil: background, preparation of model compounds, and gas-phase proton affinities. J Chem Soc Perkin Trans. 1989;(10):1499-1506.
[45] Katritzky AR, Szafran M, Stevens J. The tautomeric equilibria of thio analogues of nucleic acid bases. Part 2. AM1 and ab initio calculations of 2-thiouracil and its methyl derivatives. J Chem Soc Perkin Transac.1989;(10):1507.
[46] Blake RD, Hess ST, Nicolson-Tuell J. The influence of neighbour stacking energies on the rate and pattern of spontaneous point mutations in DNA. J Biomol Struct Dyn. 1991; 8(6):al9.
[47] Kricker MC, Drake JW. Heat mutagenesis in bacteriophage T4: another walk down the transversion pathway. J Bacteriol. 1990;172(6):3037-9.
[48] Duncan RH, Davies GS. Mechanistic clues to the mutagenicity of alkylated DNA bases: a theoretical study. J Theor Biol. 1989;140(3):345-54.
[49] Poltev VI, Teplukhin AV, Kwiatkowski JS. Monte Carlo simulation of hydration of the guanine-uracil pairs with guanine in two tautomeric forms: contribution of water bridging to relative stability of mispairs. J Biomol Struct Dyn. 1992;9(4):747-57.
[50] Poltev VI, Gonzalez EJ, Teplukhin AV. [The possible role of rare tautomers of DNA bases in mutagenesis: study of the effect of hydration on tautomeric equilibrium by the Monte-Carlo method]. Mol Biol (Mosk). 1995;29(2):365-75.
[51] Poltev VI, Kosevich MV, Shelkovskiĭ VS, Pashinskaia VA, Gonzales EJ, Teplukhin AV, Malenkov GG. [The mechanism of tautomeric transitions of nucleic acid bases with limited access to water molecules]. Mol Biol (Mosk). 1995;29(2):376-82.
[52] Czerminski R, Kwiatkowski JS, Person WB, Szczepaniak K. Quantum-mechanical studies of the structures of cytosine dimers and guanine—cytosine pairs. J Mol Struct. 1989;198:297–305.
[53] Leonard GA, Hambley TW, McAuley-Hecht K, Brown T, Hunter WN. Anthracycline-DNA interactions at unfavourable base-pair triplet-binding sites: structures of d(CGGCCG)/daunomycin and d(TGGCCA)/adriamycin complexes. Acta Crystallogr D Biol Crystallogr. 1993;49(Pt 5):458-67.
[54] Florian J, Hrouda V, Hobza P. Proton transfer in the adenine-thymine base pair. J Am Chem Soc. 1994;116(4):1457–60.
[55] al-Taylor C, Ashraf el-Bayoumi M, Kasha M. Excited-state two-proton tautomerism in hydrogen-bonded n-heterocyclic base pairs. Proc Natl Acad Sci U S A. 1969;63(2):253-60.
[56] Hovorun DM, Mishchuk YaR, Khachenko VM. New molecular mechanisms of the genotoxic action of ultraviolet irradiation on nucleic acids. Dopovidi Nats Akad Nauk Ukrainy. 1999; (10):186-90.
[57] Poltev VI, Bruskov VI, Shuliupina NV, Rein R, Shibata M, Ornstein R, Miller J. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations]. Mol Biol (Mosk). 1993;27(4):734-57.
[58] Grebneva EA. [Irradiation of DNA with ultraviolet light: potential changes and mutations]. Mol Biol (Mosk). 1994;28(4):805-12.
[59] Radchenko ED, Plokhotnichenko AM, Sheina GG, Blago? IuP. [Infrared spectra of uracil and thymine in an argon matrix]. Biofizika. 1983;28(6):923-7.
[60] Sukhodub LF, Aksenov SA, Boldeskul AI. [Mass spectrometric and quantum chemical study of dimeric associates of nucleosides]. Biofizika. 1995;40(3):506-12.
[61] Sheina GG, Radchenko ED, Stepanian SG, Blagoi YuP. Prototropic tautomerizm of nucleic acid purine bases. Stud biophys. 1986; 114(1-3):123-31
[62] Sheina GG, Stepanian SG, Radchenko ED, Blagoi YP. IR spectra of guanine and hypoxanthine isolated molecules. J Mol Struct. 1987;158:275–92.
[63] Radchenko ED, Plokhotnichenko AM, GG Sheina, Blagoy YuP. Infrared and electron-oscillation spectra of adenine and substitutes in argon matrix. Biofizika. 1984; 29(4):553-9.
[64] Nowak MJ, Lapinski L, Fulara J. Matrix isolation studies of cytosine: The separation of the infrared spectra of cytosine tautomers. Spectrochimica Acta Part A: Molecular Spectroscopy. 1989;45(2):229–42.
[65] Ostapenko NI, Skryshevsky YuA, Kadashchuk AK, Rubin YuV. The nature of defective states in crystals of nucleic acid bases. Biopolym Cell. 1990; 6(3):65-9.
[66] Ingham K, El-Bayoumi MA. Photoinduced double proton transfer in a model hydrogen bonded base pair. Effects of temperature and deuterium substitution. J Am Chem Soc. 1974;96(6):1674–82.
[67] Hetherington WM, Micheels RH, Eisenthal KE. Picosecond dynamics of double proton transfer in 7-azaindole dimers. Chem Phys Lett. 1979;66(2):230–3.
[68] Tokumura K, Watanabe Y, Itoh M. Deuterium isotope effects of excited-state and ground-state double-proton-transfer processes of the 7-azaindole H-bonded dimer in 3-methylpentane. J Phys Chem. 1986;90(11):2362–6.
[69] Tokumura K, Watanabe Y, Udagawa M, Itoh M. Photochemistry of transient tautomer of 7-azaindole hydrogen-bonded dimer studied by two-step laser excitation fluorescence measurements. J Am Chem Soc. 1987;109(5):1346–50.
[70] Chou P-T, Wei C-Y, Chang C-P, Chiu C-H. 7-Azaindole-assisted lactam-lactim tautomerization via excited-state double proton transfer. J Am Chem Soc. 1995;117(27):7259–60.
[71] Chou P-T, Wei C-Y, Chang C-P, Kuo M-S. Structure and thermodynamics of 7-azaindole hydrogen-bonded complexes. J Phys Chem. 1995;99(31):11994–2000.
[72] Danilov VI, Mikhaleva OV, Slyusarchuk ON, Stewart JJ, Alderfer JL. On the new mechanism of mutations induced by UV-light. A theoretical study of the double-prolon phototautomerism in a model base pair of DNA Biopolym Cell. 1997; 13(4):261-8.
[73] Kong YS, Jhon MS, Lowdin P-O. Studies on proton transfers in water clusters and DNA base pairs. Int J Quant Chem. 1987;32(S14):189–209.
[74] Clementi E, Corongiu G, Detrich J, Chin S, Domingo L. Parallelism in quantum chemistry: Hydrogen bond study in DNA base pairs as an example. Int J Quant Chem. 1984;26(S18):601–18.
[75] Pivovarov VB, Reva ID, Stepan'yan SG, Sheina GG, Blagoi YuP. Study of the imino form of 1-methyladenine in argon cryomatrix and in solution by IR-spectroscopy. Biofizika. 1995; 40(6):1189-201.
[76] Sukhorukov BI, Gukovskaia AS, Sukhoruchkina LV, Lavrenova GI. [Optical properties and molecular structure of nucleic acids and their components. V. Spectrophotometric determination of thermodynamic parameters for protolytic reactions of cytosine and its N- and O-methyl derivatives]. Biofizika. 1972;17(1):5-11.
[77] Boldeskul AI, Sukhodub LF. To the question of tautomerism of nucleic acid bases. Biopolym Cell. 1997; 13(3):185-90.
[78] Hovorun DM. The prototropic tautomerism of nitrogen bases: a new insight into the old problem. Biopolym Cell. 1997; 13(3):191-6.
[79] Sukhodub LF, Aksenov SA, Boldeskul AI. [Mass spectrometric and quantum chemical study of dimeric associates of nucleosides]. Biofizika. 1995;40(3):506-12.
[80] Mirek J, Sygula A. MNDO study of the tautomers of nucleic bases. J Mol Struct. 1987; 86: 275-92.
[81] Kwiatkowski JS, Person WB. The tautomerism of the nucleic acid bases revisited from non-interacting to intacting bases. Theor Biohem Biophys. Eds D. L. Beveridge, R. Lavery. New York: Adenine press, 1990: 153-71.
[82] Kondratyuk IV, Govorun DM, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of xanthine: AMI calculation. Biopolym Cell. 1994; 10(6):52-60.
[83] Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of hypoxanthine: AMI calculation in vacuum. Biopolym Cell. 1995; 11(1):30-5.
[84] Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of imidazole and pyrimidine. Biopolym Cell. 1995; 11(6):41-4.
[85] Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of purine. Biopolym Cell. 1995; 11(6):45-50.
[86] Govorun DM, Kondratyuk IV. The quantum mechanical calculations evidence molecular-zwitterionic features of prototropfc tautomerism of canonical nucleotide bases. 1. Pyrimidines. Biopolym Cell. 1996; 12(1):42-8.
[87] Govorun DM, Kondratyuk IV. The quantum mechanical calculations evidence molecular-zwitterionic features of prototropic tautomerism of canonical nucleotide bases. 2. Purines. Biopolym Cell. 1996; 12(1):49-52.
[88] Pivovarov VB, Reva ID, Stepan'yan SG, Sheina GG, Blagoi YuP. Study of the imino form of 1-methyladenine in argon cryomatrix and in solution by IR-spectroscopy. Biofizika. 1995; 40(6):1189-201
[89] Grebneva EA. [A possible mechanism for the formation of rare tautomeric forms nucleotide bases upon UV irradiation of DNA]. Ukr Fiz Zh. 1992; 37(11):1636-42.
[90] Grebneva EA. Heat electronic desexitation as a mechanism of twoproton transitions in DNA. Dopovidi Akad Nauk Ukrainy. 1994;(2):73-5.
[91] Grebneva EA. The role of hydrogen bonds in the genetic mutations formation. Khim Fizika. 1993; 12(7): 1027-31.
[92] Gorb L, Leszczynski J. Intramolecular Proton Transfer in Mono- and Dihydrated Tautomers of Guanine: An ab Initio Post Hartree?Fock Study. J Am Chem Soc. 1998;120(20):5024–32.
[93] Gorb L, Podolyan Y, Leszczynski J. A theoretical investigation of tautomeric equilibria and proton transfer in isolated and monohydrated cytosine and isocytosine molecules. J Mol Struct : THEOCHEM. 1999;487(1-2):47–55.
[94] Smedarchina Z, Siebrand W, Ferna?ndez-Ramos A, Gorb L, Leszczynski J. A direct-dynamics study of proton transfer through water bridges in guanine and 7-azaindole. J Chem Phys. 2000;112(2):566-73.
[95] Podolyan Y, Gorb L, Leszczynski J. Protonation of nucleic acid bases. A comprehensive post-hartree?fock study of the energetics and proton affinities. J Phys Chem A. 2000;104(31):7346–52.
[96] Stepanyugin AV, Kolomiets' IM, Potyahaylo AL, Tryhubenko SA, Bohdan TV, Samijlenko SP. Influence of methylation and interactions with amino acid carboxylic group on UV spectra of purine bases and nucleosides in dimethylsulfoxide. 3. Hypoxanthine and xanthine. Biopolym Cell. 2001; 17(1):43-60.
[97] Zundel G. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv Chem Phys. 2000; 111: 217.
[98] Grebneva EA. [One of the mechanisms of formation of potential transitions under UV irradiation of DNA]. Fizika i tekhnika vysokikh davleniy. 1996; 6(3): 141-51.
[99] Barltrop JA, Coyle JD Excited States in Organic Chemistry. Wiley. 1975. 376 p.
[100] Mosse IB. Radiogenetic effects in eukaryotic cells. Radiation mutagenesis and its role in the evolution and selection. M.: Nauka, 1987; 73-83.
[101] Catal?n J, P?rez P. Photoinduced double proton transfer in a model hydrogen bonded base pair. Theoretical study. J Theor Biol. 1979;81(2):213-21.
[102] Rein R, Harris FE. Studies of hydrogen-bonded systems. II. Tunneling and tautomeric equilibria in the N-H...N hydrogen bond of the guanine-cytosine base pair. J Chem Phys. 1965;42:2177-80.
[103] Olkhovskaya JP, Tolpygo KB. [Changing the state of a hydrogen bond with the optical excitation paired nucleic acid bases]. Ukr Fiz Zh. 1970; 15(9): 1453-8.
[104] Vekshin NL. Photonics of biological structures. Pushchino, 1988;51 p.
[105] Vekshin NL. Excitation transfer in macromolecules. M.: VINITI, (Itogi nauki i tekhniki. Ser. Radiats. Khim. FotoKhim; vol. 7). 1989; 164 p.
[106] Grebneva EA, Tolpygo KB. Influence of the hydrogen bonds between paired bases of DNA on their lateral oscillations groups. Ukr Fiz Zh. 1989; 34: 832-838.
[107] Tolpygo KB, Grebneva HA. Effect of the state of h-b-1 hydrogen bond of the character of some atom vibrations in quanine-cytosine pair of the DNA molecule. Int J Quant Chem. 1996; 57(2): 219-27.
[108] Grebneva EA, Tolpygo KB. Crystal and local variations in poly (dG) -poly (dC), interacting with the hydrogen bond hb-of I. Zh Fiz Khim 1997; 71(5): 932-7.
[109] Grebneva HA, Tolpygo KB. Crystalline and local vibrations of paired bases in poly (dG)-poly (dC) interacting with the h-b-1 hydrogen bond. Int J Quant Chem. 1997. 62: 115-24.
[110] Grebneva EA, Tolpygo KB. Electrostatic interaction, the proton potential and properties of hydrogen bonds in the guanine-cytosine. Ukr Fiz Zh. 1988;33(10):1456-62.
[111] Grebneva EA. Proton potentials for widely varied hydrogen bond lengths in a water dimer. J Struct Chem. 1997;38(3):343–51.
[112] Sokolov ND. Hydrogen bond. Uspekhi Fizicheskih Nauk. 1955;57(2):205-78.
[113] Hydrogen bond. Ed ND Sokolov, VM. Chulanovsky. M.: Nauka, 1964; 340 p.
[114] Grebneva HA, Tolpygo KB. The heat deexitation of hydrogen bond protons in paired bases of DNA moleculs. Stud biophys. 1990;135(2):115-20.
[115] Grebneva EA, Tolpygo KB. [Heat transitions in DNA molecule. The life-time of excited h-b-1 hydrogen bond in paired guanine-cytosine bases]. Biofizika. 1990;35(3):395-8.
[116] Grebneva OA, Ivanov MO. The possible molecular mechanisms of untargeted type mutations formation under SOS-replication of two-stranded DNA. Biopolym Cell. 2001; 17(5):388-95.
[117] Raghunathan G, Kieber-Emmons T, Rein R, Alderfer JL. Conformational features of DNA containing a cis-syn photodimer. J Biomol Struct Dyn. 1990;7(4):899-913.
[118] Hovorun DM. A structural-dynamic model on spontaneous semiopen states in DNA. Biopolym Cell. 1997; 13(1):39-45.
[119] Novak M, Les A, Adamowicz L. Application of ab initio quantum mechanical calculations to assign matrix-isolation IR spectra of oxopyrimidines. Trends Phys Chem. 1994; 4: 137-168.
[120] Frank-Kamenetski? MD. [Fluctuational mobility of DNA]. Mol Biol (Mosk). 1983;17(3):639-52.
[121] Volkov SN. [A cracked state of the double-helical DNA]. Mol Biol (Mosk). 1995;29(5):1086-94.
[122] Grebneva HA. The molecular mechanisms derivation of mutation bases alteration after a postreplication SOS-reparation an DNA contaning thymine dimers. Biopolym Cell. 2001; 17(6):487-500.
[123] Grebneva OA. Nature and Mechanism of the formation of hot spots ultraviolet mutagenesis. Proceedings of the II Congress Ukr. biofiz. Soc (29 June-3 July 1998). Kharkiv, 1998; 234 p.
[124] Stoler AB. Genes and cancer. Br Med Bull. 1991; 47(1):64-75.
[125] Dubinin NP. New in modern genetics. Moscow, Nauka, 1986; 206 p.
[126] Khesin RB. Genome instability. Moscow, Nauka, 1984; 472 p.
[127] Bochkov NP, Chebotarev AI. Human heredity and mutagens of the environment. M.: Meditsina. 1989. 270 p.
[128] Kordyum VA. And then I sat down to write this book: It is not usual notions of human genetics. Kiev, 1993; 248 p.
[129] Poltev VI, Shuliupina NV, Bruskov VI. [Molecular mechanisms of directing biosynthesis of nucleic acids. Theoretical study of complementary base pair recognition by DNA polymerases]. Mol Biol (Mosk). 1995;29(5):1011-22.
[130] Dikomey E, Franzke J. Three Classes of DNA Strand Breaks Induced by X-irradiation and Internal ?-rays. Int J Radiat Biol. 1986;50(5):893–908.
[131] Lett JT, Cox AB, Bergtold DS. Cellular and tissue responses to heavy ions: basic considerations. Radiat Environ Biophys. 1986;25(1):1-12.
[132] Hagen U. Current aspects on the radiation induced base damage in DNA. Radiat Environ Biophys. 1986;25(4):261-71.
[133] T?oule R. Radiation-induced DNA damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;51(4):573-89.