Biopolym. Cell. 2001; 17(6):540-545.
Structure and Function of Biopolymers
Specific interaction of the amino acid model carboxylic group with purine transforms it into its N7H rare tautomeric form: results of vacuum ab initio calculations
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - National University of Kyiv-Mohyla Academy
2, Skovorody Str., Kyiv, Ukraine, 04655
Abstract
According to ab initio calculations (MP2/6-31G**//HF/6-31G**) In vacuum (which is an acceptable imitation of the hydrophobic medium at the sites of protein-nucleic acid contacts), specific interaction of the acetate onion (model of deprotonated residues of aspartic and glutamic acids) with the purine transforms this base from the N9H ground-state tautomeric form into the N7H high-energy tautomer (hE-EN7H-EN9H is about 4 kcul/mol) with the energy advantage of 0.46 kcal/moL The effect is achieved due to the higher complexation energy of the N7H tautomer as compared to the N9H one, which overcompensates the energy excess (about 3.90 kcal/mol) of the rare tautomer. A possible biological significance of the data obtained for more profound understanding of elementary acts of protein-nucleic acid recognition, in particular, the enzyme catalysis, is discussed.
Full text: (PDF, in Ukrainian)
References
[1]
Pavlov BA, Terent'ev AP. The course of Organic Chemistry. M: Goskhimizdat, 1962. 592 p.
[2]
Handbook of Biochemistry and Molecular Biology: Nucleic Acids. Ed. G. D. Fasman. New York: CRC press, 1986; Vol. 1. 637 p.
[3]
Heterocyclic compounds. Ed. Elderfield RC. Vol 8 Tetrazoles, Tetrazines and Purines and related ring systems. Wiley and Sons 1976.
[4]
Lin J, Yu C, Peng S, Akiyama I, Li K, Lee LK, LeBreton PR. Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine. J Am Chem Soc. 1980;102(14):4627–31.
[5]
Pecourt J-ML, Peon J, Kohler B. Ultrafast Internal Conversion of Electronically Excited RNA and DNA Nucleosides in Water. J Am Chem Soc. 2000;122(38):9348–9.
[6]
Watson DG, Sweet RM, Marsh RE. The crystal and molecular structure of purine. Acta Crystallogr. 1965;19(4):573-80.
[7]
Novak A. Intermolecular hydrogen bond vibrations. Croat chem acta. 1982;55(1—2):147-69.
[8]
Zorkii PM, Razumaeva AE. The coexistence of molecules having different structures in organic crystals. J Struct Chem. 1979;20(3):390–3.
[9]
Grant DM, Pugmire RJ. Carbon-13 magnetic resonance. XIX. Benzimidazole, purine, and their anionic and cationic species. J Am Chem Soc. 1971;93(8):1880–7.
[10]
Majoube M, Milli? P, Chinsky L, Turpin P., Vergoten G. Resonance Raman spectra for purine. J Mol Struct. 1995;355(2):147–58.
[11]
Borin AC, Serrano-Andr?s L, F?lscher MP, Roos BO. A theoretical study of the electronic spectra of N 9 and N 7 purine tautomers. J Phys Chem A. 1999;103(12):1838–45.
[12]
Stepanian SG, Sheina GG, Radchenko ED, Blagoi YP. Theoretical and experimental studies of adenine, purine and pyrimidine isolated molecule structure. J Mol Struct. 1985;131(3-4):333–46.
[13]
Sheina GG, Radchenko ED, Stepanian SG, Blagoi YuP. Prototropic tautomerizm of nucleic acid purine bases. Stud biophys. 1986; 114(1-3):123-31
[14]
Nowak MJ, Lapinski L, Kwiatkowski JS. An infrared matrix isolation study of tautomerism in purine and adenine. Chem Phys Lett. 1989;157(1-2):14-8.
[15]
Nowak MJ, Lapinski L, Kwiatkowski JS, Leszczynski J. Infrared matrix isolation and ab initio quantum mechanical studies of purine and adenine. Spectrochim Acta A. 1991;47(1):87–103.
[16]
Nowak MJ, Rostkowska H, Lapinski L, Kwiatkowski JS, Leszczynski J. Experimental matrix isolation and theoretical ab initio HF/6-31G(d, p) studies of infrared spectra of purine, adenine and 2-chloroadenine. Spectrochim Acta A. 1994;50(6):1081–94.
[17]
Nowak MJ, Rostkowska H, Lapinski L, Kwiatkowski JS, Leszczynski J. Tautomerism N(9)H - N(7)H of purine, adenine, and 2-chloroadenine: combined experimental IR matrix isolation and ab initio quantum mechanical studies. J Phys Chem. 1994;98(11):2813–6.
[18]
Caminati W, Maccaferri G, Favero PG, Favero LB. Free jet absorption millimeter wave spectrum of purine. Chem Phys Lett. 1996;251(3-4):189–92.
[19]
Nir E, Kleinermanns K, Grace L, de Vries MS. On the photochemistry of purine nucleobases. J Phys Chem A. 2001;105(21):5106–10.
[20]
Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of pyrimidine, imidazole and purine in vacuum: calculation by AMI method. Biopolym Cell. 1995; 11(5):21-23.
[21]
Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of purine. Biopolym Cell. 1995; 11(6):45-50.
[22]
Govorun DM, Kondratyuk IV, Zheltovsky NV. The influence of protonation and deprotonation, on the acidic-basic properties of purine, pyrimidine and imidazole. Biopolym Cell. 1995; 11(3-4):29-34.
[23]
Shishkin OV, Gorb L, Leszczynski J. Conformational flexibility of pyrimidine ring in adenine and related compounds. Chem Phys Lett. 2000;330(5-6):603–11.
[24]
Samijlenko SP, Bogdan TV, Trygubenko SA, Potyahaylo AL, Hovorun DM. Deprotonated carboxylic group of amino acids transforms adenine into its rare prototropic tautomers. Ukr Biokhim Zh. 2000;72(6):92-5.
[25]
Samijlenko SP, Potyahaylo AL, Stepanyugin AV, Bogdan TV, Dzerzhyns'kyi ME, Hovorun DM. Specific interactions of izoguanine with neutral and deprotonated carboxylic group of amino acids: results af model quantum chemical calculations. Ukr Biokhim Zh. 2001;73(3):147—51.
[26]
Samijlenko SP, Kondratyuk IV, Potyahaylo AL, Stepanyugin AV, Hovorun DM. Specific interactions of deprotonated carboxylic group with uracil and thymine provoke diketo - keto-enolic tautomeric transition in bases. Ukr Biokhim Zh. 2001; 73(4):128-31.
[27]
Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and molecular electronic structure system. J Comp Chem. 1993;14(11):1347–63.
[28]
Broo A, Holm?n A. Ab initio MP2 and DFT calculations of geometry and solution tautomerism of purine and some purine derivatives. Chem Phys. 1996;211(1-3):147–61.
[29]
Ha T-K, Keller MJ, Gunde R, Gunthard HH. Quantum chemical study of structure, energy, rotational constants, electric dipole moments and electric field gradients of all isomeric adenines. J Mol Struct. THEOCHEM. 1996;364(2-3):161–81.
[30]
Cleland WW, Frey PA, Gerlt JA. The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem. 1998;273(40):25529-32.
[31]
Kondratyuk IV, Samijlenko SP, Kolomiets' IM, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. J Mol Struct. 2000; 523(1-3):109-18.
[32]
Kondratyuk IV, Samijlenko SP, Kolomiets IM, Potyahaylo AL, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine: unexpected biological view. Biopolym Cell. 2000; 16(2):124-137.
[33]
Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A. 1958;44(2):98-104.