Biopolym. Cell. 2001; 17(6):534-539.
Structure and Function of Biopolymers
Kinetic parameters of the tRNATyr transcript aminoacylation by the bovine liver tyrosyl-tRNA synthetase
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
The full-length tyrosyl-tRNA synthetase from bovine liver and its truncated form without the C-terminal noncatalytic domain were expressed in a bacterial system. Both enzymes have been compared in respect of the aminoacylation kinetic constants. It has been shown that the catalytic efficiency of the yeast tRNATyr and tRNATyr transcript tyrosylation upon deletion of the C-terminal domain decreases by factors of 4 and 18 respectively. The catalytic efficiency decrease in the tRNATyr transcript tyrosylation is mainly due to the increasing of K.w We suggest that the C-terminal domain improves the aminoacylation activity of tyrosyl-tRNA synthetase by strengthening tRNA binding.
Full text: (PDF, in Russian)
References
[1]
Schimmel PR, S?ll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601-48. Review.
[2]
Kisselev LL, Favorova OO, Lavrik OI. Biosynthesis of proteins from amino acids to aminoacyl-tRNA. Moscow, Nauka, 1984; 408 p.
[3]
Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem. 1987;56:125-58.
[4]
Rossmann MG, Moras D, Olsen KW. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974;250(463):194-9.
[5]
Fersht AR, Knill-Jones JW, Bedouelle H, Winter G. Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism. Biochemistry. 1988;27(5):1581-7.
[6]
Rould MA, Perona JJ, S?ll D, Steitz TA. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989;246(4934):1135-42.
[8]
Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S, Kigawa T, Miyazawa T, Yokoyama S, Morikawa K. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science. 1995;267(5206):1958-65.
[9]
Mechulam Y, Schmitt E, Maveyraud L, Zelwer C, Nureki O, Yokoyama S, Konno M, Blanquet S. Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. J Mol Biol. 1999;294(5):1287-97.
[10]
Cusack S, Yaremchuk A, Tukalo M. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 2000;19(10):2351-61.
[11]
Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[12]
Wang CC, Schimmel P. Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem. 1999;274(23):16508-12.
[13]
Alzhanova AT, Fedorov AN, Ovchinnikov LP, Spirin AS. Eukaryotic aminoacyl-tRNA synthetases are RNA-binding proteins whereas prokaryotic ones are not. FEBS Lett. 1980;120(2):225-9.
[14]
Kohda D, Yokoyama S, Miyazawa T. Functions of isolated domains of methionyl-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8. J Biol Chem. 1987;262(2):558-63.
[15]
Kaminska M, Deniziak M, Kerjan P, Barciszewski J, Mirande M. A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J. 2000;19(24):6908-17.
[16]
Ludmerer SW, Wright DJ, Schimmel P. Purification of glutamine tRNA synthetase from Saccharomyces cerevisiae. A monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. J Biol Chem. 1993;268(8):5519-23.
[17]
Levanets OV, Naidenov VG, Woodmaska MI, Odynets KA, Matsuka GH, Kornelyuk AI. PCR amplification, cloning and sequencing of cDNA fragment encoding a nucleotide binding domain of mammalian tyrosyl-tRNA synthetase Biopolym Cell. 1996; 12(5):66-71.
[18]
Levanets OV, Naidenov VG, Woodmaska MI, Matsuka GH, Kornelyuk AI. Cloning of cDNA encoding C-terminal part of mammalian tyrosyl-tRNA synthetase using of PCR-amplified radioactive probe. Biopolym. Cell. 1997; 13(2):121-6
[19]
Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8
[20]
Kurochkin IV, Korneliuk AI, Matsuka GKh. Interaction of eukaryotic tyrosyl-tRNA-synthetase with high molecular weight RNA. Mol Biol (Mosk). 1991;25(3):779-86.
[21]
Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab. press, 1989.
[22]
Sampson JR, Uhlenbeck OC. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988;85(4):1033-7.
[23]
Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996;15(19):5437-48.
[24]
Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987;15(21):8783-98.