Biopolym. Cell. 2000; 16(5):420-424.
Molecular and Cell Biotechnologies
Surfactant degradative plasmids
- Ovcharenko Institute for Biocolloidal Chemistry, NAS of Ukraine
42, Vernadsky blvd., Kyiv, Ukraine, 03142 - Skryabin Institute of Biochemistry and Physiology of Microorganisms Russian Academy of Science
5, Prospect Nauki, Puschino, Moscow reg., , Russian Federation,142290
Abstract
It has been shown that the degradation of anionlc, cationic and ampholytic surfactants by pseudomonads can be controlled by the plasmids with size of 60–130 kb. Most plasmid strains that degrade surfactants are capable of conjugative transfer and elimination from bacteria cells. Restriction patterns of plasmids do not reveal significant homology between plasmids.
Full text: (PDF, in English)
References
[1]
Johnston JB, Murray K, Cain RB. Microbial metabolism of aryl sulphonates a re-assessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie Van Leeuwenhoek. 1975;41(4):493-511.
[2]
Kertesz MA, Cook AM, Leisinger T. Microbial metabolism of sulfur- and phosphorus-containing xenobiotics. FEMS Microbiol Rev. 1994;15(2-3):195-215. Review.
[3]
Brilon C, Beckmann W, Hellwig M, Knackmuss HJ. Enrichment and isolation of naphthalenesulfonic Acid-utilizing pseudomonads. Appl Environ Microbiol. 1981;42(1):39-43.
[4]
Stavskaya SS, Udod VM, Taranova LA, Krivets LA. Microbiological purification of water from surfactants. Kyiv: Naukova Dumka, 1988. 182 p.
[5]
Taranova LA, Ovcharov LF, Rotmistrov MN. Bacterial degaradation of ampholytic surfactants. Biotekhnologiya. 1990; (4):31-4.
[6]
Stavskaya SS, Taranova LA, Krivets A, Grigorieva TN, Rotmistrov MN. Microbiological method of waste water treatment from anionic surfactants. Khimiya i Tekhnologiya Vody. 1982; 4(4):368-70.
[7]
Taranova LA, Grishchenko SV, Radchenko OS, Trachevsky VV, Delemenchuk NV. Microbiological treatВment of waste water from cationic surfactants. Khimiya i Tekhnologiya Vody. 1991; 13(11):1051-6.
[8]
Rheinwald JG, Chakrabarty AM, Gunsalus IC. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci U S A. 1973;70(3):885-9.
[9]
Griffith KL, Wolf RE Jr. Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun. 2002;290(1):397-402. Erratum in: Biochem Biophys Res Commun 2002 Mar 22;292(1):292.
[10]
Babykin MM, Zinchenko VV, Bibikova MK, Shestakov SV. Isolation of large plasmids. Mol Gen Mikrobiol Virusol. 1984; 7: 21-3.
[11]
Gerhardt P, Murray RGR, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB. Manual of Methods for General Bacteriology. Washington D. C: ASM press, 1981: 137 p.
[12]
Wheatcroft R, Williams PA. Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol. 1981;124(2):433-7.
[13]
Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978;1(4):584-8.
[14]
Maniatis T, Fritch EF, Sambrook . Molecular cloning: A laboratory manual. New York, 1989: 1435.
[15]
Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988;70(1):191-7.
[16]
Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979;76(4):1648-52.
[17]
Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH. Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol. 1971;108(3):1244-9.