Biopolym. Cell. 2000; 16(3):159-185.
Reviews
Genome variability in the somatic plant cells. 6. Variability and selection in the course of adaptation to in vitro conditions
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
Data on the dynamics of the cell population genetic structure as well as the role and peculiarities of the selection effects in the course of the cell adaptation to in vitro conditions have been reviewed. Effect of the growth conditions, role of the genotype, phytohormones and other factors that control the variability and selection trends liave been discussed. The plant cell adaptation has been shown to be the multistage event. The physiological adaptation to the conditions of maintenance in vitro is observed on the early steps of the culturing, later on there occur the processes of the genetic adaptation manifested as a change in tlie cell population genetic structure. In the course of adaptation the representative strain samples exhibit ail types of the population genetic structure evolution i. e. divergence, convergence and parallelism. Three periods in the adaptation process have been revealed: (i) the primary population of isolated cells, (ii) the strain formation and (Hi) the established strain. These periods are determined by the type, mainstream, and rigidity of the selection operating in the cell population. The established (adapted) strains are characterized by the physiological and genetic homeo-stasis that preferentially results from the action of stabilizing selection. It has been concluded that cell adaptation to the conditions of long-term maintenance in the passaged culture is the process of formation of the novel biological system as a result of the effect of the major driving factors of evolution, viz., variability, heredity, selection and possibly gene (genotypes) drift. On the whole, the phenomenon studied may provide a model of the profound (but reversible) regressive evolution of the biological system – from the multicellular level to the unicellular one.
Full text: (PDF, in Russian)
References
[1]
Kunakh VA. Genome variability in plant somatic cells. 3. Callus formation in vitro. Biopolym Cell. 1997; 13(5):362-71.
[2]
Kunakh VA. Genome variability in plant somatic cells. 4. Variability in the process of dedifferentiation and callus formation in vitro. Biopolym Cell. 1998; 14(4):298-319.
[3]
Kunakh VA. Genome variability in plant somatic cells. 5. Growth and mitotic regime variations during adaptation to maintenance in vitro. Biopolym Cell. 1999; 15(5):343-59.
[4]
Kunakh VA. Cytogenetic behaviour of tissue culture of Haplopappus Culture of isolated organs, tissues and cells of plants M.: Nauka, 1970:155-8.
[5]
Sidorenko PG, Kunakh VA. Character of caryotype variability in cell population of tissue culture of Haplopappus gracilis with long term passaging. Tsitol Genet. 1970; 4(3):235-41.
[6]
Sidorenko PG, Kunakh VA. Production of Culture of Haplopappus gracilis and Crepis capillaris and their cytogenetic characteristic. Tsitol Genet. 1972; 6(6):483-86.
[7]
Kunakh VA. Polyploidy in cell culture in vitro and its possible causes. Experim. polyploidy in crop plants. Kiev: Naukova, Dumka, 1974: 39-57.
[8]
Gubar EK, Kunakh VA. Karyotype variability of cultured Crepis cells (Crepis capillaris L. Wallr.). Genetika. 1992; 28(6):51-61.
[9]
Zosimovich VP, Levenko BA, Iurkova GN, Legeida VS. Isolation of strains of Crepis capillaris of different ploidy in tissue culture. Dokl Akad Nauk SSSR. 1972; 203(5): 1188-9.
[10]
Sacrist?n MD. Clonal development in tumorous cultures of Crepis capillaris. Naturwissenschaften. 1975;62(3):139-40.
[11]
Kallak HI, Vapper MA.Cytogenetic characterization of long-term cultured Crepis L callus. Uch Zapiski Taru Univ. 1979;499:18-29.
[12]
Kallak HI. About karyotypic differentiation of callus cells in long-term culture. Uch Zapiski Taru Univ. 1983; 583:25-36.
[13]
Vapper M, Kallak H. Karyotypic differentiation of long-term callus culture ofCrepis capillaris. Biol Plant. 1986;28(6):417–23.
[14]
Kallak KhI, Yarvekyul'g LYa. Morphological and cytological heterogeneity pea callus. Tsitol Genet. 1968; (5):408-14.
[15]
Kallak KhI, Yaverkyulg LYa. Cytogenetic characterization of some strains of pea callus. Genetics of cereals and legumes. Orel, 1972. Iss. 44: 7-16.
[16]
Kallak H, J?rvek?lg L. Changes in chromosome complement in long-term pea callus cultures. Acta Biol Acad Sci Hung. 1977;28(2):183-9.
[17]
Kallak H, Jarvekulg JL, Vapper M. Plant tissue culture as a convenient model studying various cytogenetic problems. Genetics in Soviet Estonia. Tallin, 1978: 26-38.
[18]
Knbsche R, Gunther G. Unthersuchungen zur spontanen Polyploidisierung einer Gewebekultur von Pisum sativum. I. Der Nachweis von Restitutionszellzyklen. Biol Zbl. 1980; 99(3):311-323.
[19]
Kunakh VA, Alkhimova EG, Voityuk LI. Variability of the chromosome number in callus tissues and pea regenerants. Tsitol Genet. 1984; 18(1):20-5.
[20]
Levenko BA, Kunakh VA, Yurkova GN. Cytogenetic study of haploid callus tissue. In: Experimental polyploidy in crops K.: Naukova dumka, 1974: 173-80.
[21]
Kunakh VA, Levenko BA, Zassimovich VP. In vitro culture of Nicotiana tabacum anthers. II. Cytogenetic analysis of callus tissue derived from antihers at long-lasting passages. Tsitologiia. 1978;20(2):166-72.
[22]
Kunakh VA, Levenko BA, Alpatova LK, Zossimovich VP. Variability of chromosome number in cells of callus tissue strains during the formation of strains from leaves of haploid tobacco plants. Tsitologiia. 1979;21(1):107-12.
[23]
Kunakh VA, Legeyda VS. Cytogenetic study of cytokinin independent strain of tobacco cell cultures. In: Experimental plant genetics. Ed Zosimovich VP. Kiev: Naukova Dumka, 1982:74-9.
[24]
Kunakh VA. Features of isolated plant tissue culture as the cell population at the prospect of its application in genetics and breeding. In: Experimental plant genetics. K.: Naukova Dumka. 1977:112-22.
[25]
Zossimovich VP, Levenko BA, Kunakh VA, Yurkova GN. Cytogenetic study of callus tissue of tomato plants with different ploidy. In: Plant Cell Culture. K.: Naukova Dumka, 1978;97-104.
[26]
Koornneef M, van Diepen JAM, Hanhart CJ, Kieboom-de Waart AC, Martinelli L, Schoenmakers HCH, et al. Chromosomal instability in cell- and tissue cultures of tomato haploids and diploids. Euphytica. 1989;43(1-2):179–86.
[27]
Chugunkova TV, Dubrovnaya OV, Shevtsov IA. Cytogenetic features of callus cultures of diploid and triploid mangel. Tsitol Genet. 1995;29(2):49-54.
[28]
Chugunkova TV, Dubrovnaya OV. Cytogenetic analysis of calus cultures and plants-reganerabts obtained from the explants of sugar beet of different ploidity. Tsitol Genet. 1998; 32(4):9-15.
[29]
Lavania UC, Srivastava S. Ploidy dependence of chromosomal variation in callus cultures ofHyoscyamus muticus L. Protoplasma. 1988;145(1):55–8.
[30]
Lavania UC, Srivastava S. Evolutionary genomic change paralleled by differential responses of 2? and 4? calli cultures. Experientia. 1990;46(3):322–4.
[31]
Savchenko EK, Badaeva ED, Kunakh VA, Badaev NS. Caryotypical polymorphism of related maize lines. Doklady Akad Nauk Ukr SSR. Ser B. 1982;(7):69-72.
[32]
Savchenko EK, Kunakh VA. Comparative characteristics of the tissue culture of two related maize lines differing in the amount of heterochromatin. Culture of plant cells and biotechnology. M.: Nauka, 1986: 214-8.
[33]
Gubar EK Kunakh VA. C-banding in Zea mays II Biotechnology in agriculture and forestry. Maize. Berlin; Heidelberg: Springer, 1994; Vol. 25:366—381.
[34]
Levenko BA, Iurkova GN, Kunakh VA, Zasimovich VP. Cereal grass Zingeria with low chtomosome number - a new model for plant celland tissue culture. Dokl Akad Nauk SSSR. 1976; 228(1):209-10.
[35]
LegeÄda VS, Levenko BA, Berezenko NP, Liferova VV, Shchibria GR. [Acquisition and study of callus tissue during cultivation of mazzard and strawberry anthers]. Tsitol Genet. 1976;10(6):492-6.
[36]
Levenko BA, Yurkova GN, Kunakh VA, Legeyda VS. Behavior anthers of wheat and rye in an isolated culture. Exp plant genetics. Kiev.: Naukova Dumka. 1977:123-30.
[37]
Zagorska Ya, Dmitrov B. Cytogenetic study of tobacco cells populations in culture derived from plants of different ploidy in vitro. Plant Cell Culture. Kiev: Naukova Dumka, 1978;93-7.
[38]
Negrutiu I, Jacobs M, Cattoir A. Arabidopsis thaliana L., espece modele en genetique cellulaire.Physiol veget. 1978; 16(3):365-79.
[39]
Ono K, Tsukida T. Haploid callus formation from anther cultures in a cultivar of paeonia. Jpn J Genet. 1978;53(1):51–4.
[40]
Chen C-C, Chen C-M. Changes in chromosome number in microspore callus of rice during successive subcultures. Can J Gen Cytol. 1980;22(4):607–14.
[41]
Boucaud M-T, Gaultier J-M. Cytophotometric study and statistical analysis of ploidy evolution in cultured tissues of Nicotiana tabacum. Physiol Plant. 1981;51(2):207–14.
[42]
Singh BD. Variation in chromosome number and structure in plant cells during in vitro culture. Proc Int Symp Plant Tissue and Cell Culture. Application to Crop Improvement (Czechoslovakia, 24—29 Sept. 1984). Olomouc, 1984:305-14.
[43]
Sree Ramulu K, Dijkhuis P, Roest S, Bokelmann GS, De Groot B. Early occurence of genetic instability in protoplast cultures of potato. Plant Sci Lett. 1984;36(1):79–86.
[44]
Yurkova GN, Levenko BA, Novozhilov OV. Ploidy level of the callus tissue cells in Triticum monococcum. Tsitol Genet. 1985; 19(3):202-6.
[45]
Yurkova GN, Levenko BA, Novozhilov OV. Ploidy of the callus tissue in durum and common wheat. Tsitol Genet. 1985;19(4):264-7.
[46]
Escand?n A, Mart?nez A, Caso OH, Pomar MC. Regeneration of Aneuploid Plants from Tetraploid (2n = 24) Tradescantia crassifolia Cav. through Callus Culture. J Plant Physiol. 1985;119(5):467–72.
[47]
D'Amato F. Spontaneous mutations and somaclonal variation. Nucl. Tech. and in vitro Cult. Plant Improv: Proc. Int. Symp. (Vienna, 19—23 Aug.). Vienna, 1986:3—10.
[48]
Pijnacker LP, Hermelink JHM, Ferwerda MA. Variability of DNA content and karyotype in cell cultures of an interdihaploid Solanum tuberosum. Plant Cell Rep. 1986;5(1):43–6.
[49]
Bykova EV, Lev SV, Musaev DA. Cytogenetic analysis of callus tissues in certain species of cotton in the long-term culture. Tsitol Genet. 1988; 22(3): 49-51.
[50]
Schneider I. Zur karyotypischen Variability in Zell- und Gewebekulturen von haploidem Nicotiana plumbaginifolia. Biol Zbl. 1989; 108(3):249-55.
[51]
Franklin CI, Mott RL, Vuke TM. Stable ploidy levels in long-term callus cultures of loblolly pine. Plant Cell Rep. 1989;8(2):101-4.
[52]
Taha RM, Francis D. The relationship between polyploidy and organogenetic potential in embryo- and root-derived tissue cultures of Vicia faba L. Plant Cell Tiss Organ Cult. 1990;22(3):229–36.
[53]
Gozukirmizi N, Ari S, Oraler G, Okatan Y., Unsal N. Callus induction, plant regeneration and chromosomal variations in barley. Acta bot neerl. 1990; 39(4): 379-87.
[54]
Rakleviciene D, Urbonaite B. Dependance of DNA amount in nuclei on ploidy of explant and auxins type in the course of dedifferentiation processes in tobacco callus cells. Fiziologiya i biokhimiya kul'turnykh rasteniy. 1995; 27(5-6):367-73.
[55]
Jha S. Cytological analysis of embryogenic callus and regenerated plants of urginea indica Kunth., Indian Squill . Caryologia. 1989;42(2):165–73.
[56]
Shyamaprasad C, Sumitra S. Polyploidization of chromosomes of Urginea indica in vitro callus. Indian J Exp Biol. 1980; 18(11): 1324-5.
[57]
Sopory SK, Tan BH. Regeneration and cytological studies of anther and pollen calli of dihaploid Solanum tuberosum. Z Pflanzenzucht. 1979; 82(1):31-5.
[58]
Khokhlov SS, Tyrnov VS, Grishina YeV, Davoyan YaI, Zaytseva MI, Zverzhanskaya LS, Selivanov AS, Sukhanov VM, Shishkinskaya NA, Guseva AI. Haploidy and Selection. Moscow: Nauka, 1976. 222.
[59]
Tawakley M, Sundhavani AK, Reddy GM. Chromosomal instability in callus of wild and cultivated genotypes of Cicer. Indian J Exp Biol. 1992; 30(7):628-31.
[60]
Sree Ramulu K, Dijkhuis P, Hanisch Ten Cate CH, De Groot B. Patterns of DNA and chromosome variation during in vitro growth in various genotypes of potato. Plant Science. 1985;41(1):69–78.
[61]
Balzan R. Karyotype instability in tissue cultures derived from the mesocotyl of Zea mays seedlings. Caryologia. 1978;31(1):75–87.
[62]
Kunakh VA. Features of structural mutagenesis in cultured plant cells populations. Uspekhi sovrem genetiki. Ed. NP. Dubinina. M.: Nauka, 1984; Iss 12:30-62.
[63]
Mitrofanov YuA. Induced variability of eukaryotic chromosomes. M.: Nauka, 1994; 142 p.
[64]
Vnuchkova VA. Development of methods for obtaining regenerated plants tomato in a tissue culture. Tissue and cell cultures in plant breeding. M.: Kolos, 1979:14-23.
[65]
Zhang DL, Li KQ, Gu W, Hao LF. Chromosome aberration and ploidy equilibrium of Vicia faba in tissue culture. Theor Appl Genet. 1987;75(1):132-7.
[66]
Singh BD. Origin of aneuploid variation in tissue cultures of Haplopappus Gracilis and Vicia Hajastana. Caryologia. 1981;34(3):337–43.
[67]
Sacristan MD. Karyotypic changes in callus cultures from haploid and diploid plants of Crepis capillaris (L.) Wallr. Chromosoma. 1971;33(3):273-83.
[68]
Sheridan WF. Long term callus cultures of Lilium: relative stability of the karyotype. J Cell Biol. 1974; 63(2):313.
[69]
Pape? D, Jelaska S, Tomaseo M, Devid? Z. Triploidy in callus culture of Vicia faba L. investigated by the Giemsa C-banding technique. Experientia. 1978;34(8):1016–7.
[70]
Ashmore SE, Gould AR. Karyotype evolution in a tumour derived plant tissue culture analysed by Giemsa C-banding. Protoplasma. 1981;106(3-4):297–308.
[71]
Gould AR. Chromosome instability in plant tissue cultures studied with banding techniques. Proc V Int Congr Plant Tissue and Cell Cult. (Tokyo and Lake Yamanaka, 1982). Tokyo, 1982:431-2.
[72]
Ashmore SE, Shapcott AS. Cytogenetic studies of Haplopappus gracilis in both callus and suspension cell cultures. Theor Appl Genet. 1989;78(2):249–59.
[73]
Ogihara Y. Tissue culture in Haworthia. V. Characterization of chromosomal changes in cultured callus cells. Jpn J Genet. 1982;57(5):499–511.
[74]
Singh RJ. Chromosomal variation in immature embryo derived calluses of barley (Hordeum vulgare L.). Theor Appl Genet. 1986;72(5):710-6.
[75]
Babayeva SA, Petrova TF, Gaponenko AK. Cytogenetics of in vitro cultured somatic cells and regenerated plants of Triticum durum Desf. Tsitol Genet. 1994; 28(4):23-31.
[76]
Zorinyants SE, Nosov AV, Badaeva ED, Smolenskaya IN, Badaev NS. Cytogenetic analysis of a long-term Triticum timopheevii (Zhuk.) Zhuk. cell suspension culture. Plant Breeding. 1995;114(3):219–25.
[77]
Winfield MO, Karp A, Lazzeri PA, Davey MR. Chromosome 5D instability in cell lines of Triticum tauschii and morphological variation in regenerated plants. Genome. 1995;38(4):737-42.
[78]
Mohanty BD, Ghosh PD, Maity S. Chromosome behaviour in long term callus culture in Hordeum vulgare L. CIS. 1986;41:10—11.
[79]
Gubar EK, Kunakh VA. Alterations of the heterochromatin distribution in chromosomes of Crepis capillaris L. Wallr. diploid cells in culture in vitro. Doklady Akad Nauk Ukr SSR. Ser B. 1988;(9):66-9.
[80]
Singh BD. Effects of physical conditions of medium on karyotypes of cell populations in vitro. The Nucleus. 1975; 18(1—2):61-5.
[81]
Singh BD, Harvey BL. Selection for diploid cells in suspension cultures of Haplopappus gracilis. Nature. 1975;253(5491):453.
[82]
Ernst S, Scheibner K, Diettrich B, Luckner M. Androgenetic cell cultures and plants from anthers of Digitalis lanata. J Plant Physiol. 1990;137(2):129–34.
[83]
Demoise CF, Partanen CR. Effects of subculturing and physical condition of medium on the nuclear behavior of a plant tissue culture. Am J Bot. 1969;56(2):147-52.
[84]
Kaneko K. Karyological studies on callus cells of Haplopappus gracilis. Kromosomo. 1974; 95:2943-49.
[85]
Kaneko K. Karyological studies in callus cells from stem, anther and ovule cultures of Haplopappus gracilis. Bull Fukuoka Univ Educ Nat Sci. 1975; 25: 77-87.
[86]
Hashim ZN, Campbell WF, Carman JG. Normalization of the DNA content of telophase cells from wheat calli by nutrient modifications. Theor Appl Genet. 1991;82(4):413-6.
[87]
Shamina ZB, Frolova LV. Cytogenetic study of tissue culture Haplopappus during prolonged cultivation. Isolated. organs, tissues, and plant cells Cultures . M: Nauka, 1970:149-54.
[88]
Binarov? P, Dole?el J. Alfalfa embryogenic cell suspension culture: growth and ploidy level stability. J Plant Physiol. 1988;133(5):561–6.
[89]
Pavlova MK, Piven MM, Shupta LV, Marynovska LV, Tymokhina YaT, Malyuk VT. Reproduction in vitro cell Beta vulgaris L. planned modifications in culture medium. 2. Transfer culture from solid to liquid medium Ukr Bot Zh. 1977; 34(2):134-7.
[90]
Malyuk VT, Pavlova MK, Tymokhina NT, Piven MM, Shupta LV, Marynovska LV. Reproduction in vitro cell Beta vulgaris L. planned modifications in culture medium. 4. Medium optimization . Ukr Bot Zh. 1977; 34(4):340-7.
[91]
Popov AS, Volkova LA. Cryopreservation and some characteristics of Dioscorea deltoidea cell cultures in the vitamin-free medium. Fiziologiia rasteniy. 1994; 41(6):923-8.
[92]
Casale O, Garcia de Garcia E. Variacienes citogeneticas del calle de tejide cotiledenar de Canavalia ensiformis L. Acta biol venez. 198;11(1):1-19.
[93]
Chung G. Effect of chemical and physical factors on the chromosome number in Nicotiana anther callus cultures in vitro. Cytologia. 1972; 7:381-6.
[94]
Kulieva FB, Shamina ZB. Comparative cytogenetic study of the tissue culture of Crepis capillaris under various cultivation conditions. Fiziologiia rasteniy. 1972; 19(2):372-4.
[95]
Gordon SA, Kremer P, Venketeswaran S. Growth and cytological responses to white and far-red light of Haplopappus cells in suspension culture. Radiation Botany. 1974;14(1):17–22.
[96]
Kohler K-H, Binh Le Tran, Kahl M. Wechselwirkungen von Licht und Phytohormonen bei der Gewebekultur. Potsdam Forsch B. 1988; 57:128-32.
[97]
Sitbon M. Production of haploid Gerbera jamesonii plants by in vitro culture of unfertilized ovules. Agronomie. 1981;1(9):807–12.
[98]
Kunakh VA. Genome variability of plant somatic cells. 1. Variability during ontogenesis. Biopolym Cell. 1994; 10(6):5-35.
[99]
Kunakh VA. Genome variability in plant somatic cells. 2. Natural variability. Biopolym Cell. 1995; 11(6):5-40.
[100]
Shimada T. Chromosome constitution of tobacco and wheat callus cells. Jpn J Genet. 1971;46(4):235–41.
[101]
Kunakh VA, Sidorenko PG, Zosimovich VP. Effect of kinetin on the reproduction of cells of different ploidy. Success of polyploidy. Kiev: Naukova, Dumka, 1977: 203-15.
[102]
Kunakh VA, Alpatova LK. The role of plant hormones in the variability of the chromosomes number in tissue culture Haplopappus gracilis. Dokl Akad Nauk SSSR. 1979; 245(4): 967-70.
[103]
Ghosh A, Gadhil VN. Selection pressure theory and predoÂminance of diploidy in suspension culture. Indian J Exp Biol. 1980; 18(9):958-61.
[104]
Reddy V, Peterson PA. Effect of age and genetic background on the in vitro maize endosperm callus initiation. Maydica. 1987; 32(2):151-61.
[105]
Sengupta J, Sen S. Comparative analysis of the effect of growth hormone on morphology and cytology of callus culture of Crepis Tectorum L. Caryologia. 1987;40(3):221–7.
[106]
Li Shisheng, Zhang Yuling. Chromosomal variability of callus and regenerated plants of wheat. Acta Genet Sin. 1991; 18(4):332-8.
[107]
Nayak S, Sen S. Growth, chromosome number and DNA content in callus of Ornithogalum thyrosides as influenced by different auxins. Cytobios. 1993; 76(306-307):209-16.
[108]
H?nisch ten Cate CH, Sree Ramulu K. Callus growth, tumour development and polyploidization in the tetraploid potato cultivar bintje. Plant Sci. 1987;49(3):209–16.
[109]
Kunakh VA, Zosimovich VP. Effect of kinetin on the frequency and types of chromosome aberrations in a tissue culture of Haplopappus gracilis. Genetika. 1977; 13(8):1355-65.
[110]
Solovyan VT, Popovitch VA, Kunakh VA. Genome rearangement in Crepis capillaris L. (Wallr) cultured cells. Genetika. 1989; 25(10):1768-75.
[111]
Bassiri A, Carlson PS. Isozyme patterns in tobacco plant parts and their derived calli1. Crop Sci. 1979;19(6):909.
[112]
Burmeister G, H?sel W. Comparison of the ?-Glycosidases from Cicer arietinum L. cell cultures and whole seedlings. Planta Medica. 1980;40(09):40–8.
[113]
Berlyn MB. Variation in nuclear DNA content of isonicotinic acid hydrazide-resistant cell lines and mutant plants of Nicotiana tabacum. Theor Appl Genet. 1982;63(1):57-63.
[114]
Cullis CA, Cleary W. Fluidity of the flax genome. Plant Genet.: Proc. 3rd Annu. ARCO Plant Cell Res. Inst. UCLA Symp. Plant Biol. (Keystone, Colo, Apr. 13—19, 1985). New York, 1985:303-10.
[115]
Cullis CA. The Generation of Somatic and Heritable Variation in Response to Stress. Am Nat. 1987;130(s1):S62-73.
[116]
Floh EIS, Handro W, Morgante JS. Isozymic patterns of peroxidase and IAA-oxidase in cultured tissues of tobacco plants of different ploidy. Rev bras biol. 1989; 49(3):627—632.
[117]
Bogani P, Simoni A, Bettini P, Pellegrini MG, Schipani C, Simeti C, Storti E., Buiatti M. Hormones and permanent epigenetic changes in tomato somaclones. Atti/Assoc genet ital. 1992; 38:59.
[118]
Vu Dyc Quang, Shamina ZV. Cytogenetic abalysis of clones from individual cells and protoplasts of maize. Tsitol Genet. 1985;19(1):26-32.
[119]
Kulaeva OYa. Plant hormones as regulators of the activity of the genetic apparatus and protein synthesis in plants. New Trends in Plant Physiology. M.: Nauka, 1985;62-84.
[120]
Sidorova KK. Development of NI Vavilov ideas on experimental mutagenesis. Usp Sovrem Biol. 1993; 113(3):259-68.
[121]
Kartel NA, Lobanok EV, Fomicheva VV. Phytohormones and phytopathogenic bacteria. Minsk: Navuka i tekhnika, 1994; 112 p.
[122]
Pustovoitova TN, Bavrina TV, Lozhnikova VN, Zhdanova NE. Use of transgenic plants for the elucidation of role of cytokins in drought resistance. Dokl Ross Akad Nauk. 1997; 354(5):702-4.
[123]
Vilenskiy ER, Shcherbakov VA. The role of phytohormones in natural and induced mutagenesis. Tsitol Genet. 1985;19(3):214-7.
[124]
Shcherbakov VK. Physiological and biochemical protective and regenerative system of plants and their importance for selection. Vestn. s.-kh. nauki. 1982;(11):48-58.
[125]
Zakharov IA, Shvartsman PYa. Experimental study of mutagenesis. Development of evolutionary theory in the USSR. 1917—1970 yy. L.: Nauka, 1983:79-82.
[126]
Ayala FJ. An evolutionary dilemma: fitness of genotypes versus fitness of populations. Can J Genet Cytol. 1969;11(2):439–56.
[127]
Leigh, Jr. EG. Natural selection and mutability. Am Nat. 1970;104(937):301-5.
[128]
Grodzinsky DM. Reliability of plant systems. K.: Naukova Dumka, 1983; 368 p.
[129]
Sukhodolets VV. [The nature of adaptive evolutionary changes: fitness and potential]. Genetika. 1998;34(12):1589-96.
[130]
Tatarinov LYa. Essays on the Evolution Theory. M.: Nauka, 1987; 252 p.
[131]
Konstantinova TN, Aksenova NP, Bavrina TN, Chailakhian M Kh. On the ability of callusses of the tobacco plant stem to form vegetative and generative buds in vitro cultures. Dokl Akad Nauk SSSR. 1969;187(2):466-9.
[132]
Fidgeon C, Wilson G. Uptake and accumulation of ?-naphthalene acetic acid by cell suspensions of galium mollugo L. J Exp Bot. 1988;39(2):241–9.
[133]
Belyaev D. K. Destabilizing selection The development of the theory of evolution in the USSR: 1917–1970 Leningrad: Nauka, 1983:266-77.
[134]
Trut LN. D K Belyaev's evolutionaty concept: ten years later. Genetika. 1997; 33(8):1060-8.
[135]
Sidorov VA. Plant Biotechnology. Cellular selection. Kiev: Naukova Dumka, 1990. 280 p.
[136]
Solovjan VT, Zakhlenjuk OV, Kunakh VA. Rauwolfia genome rearrenqements during culturing in vitro. Biopolym Cell. 1990; 6(1):103-6.
[137]
Solov'yan VT, Spiridonova EV, Kunakh VA. Genome rearrangements in cell culture of Rauwolfia serpentina. The diverse pattern of genome variations. Genetika. 1994; 30(2):250-4.
[138]
Solov'yan VT, Spiridonova EV, Kunakh VA. Genome rearrangements in cultured Rauwolfia serpentina cells. II. Relation to interspecific variation. Genetika. 1994; 30(3):399-403.
[139]
Kunakh VA. Somaclonal variation in Rauwolfia. In: BiotechÂnology in agriculture and forestry. Somaclonal variation in crop improvement. II.—Berlin: Springer, 1996; 36:315—332.
[140]
Solovyan VT. Adaptation of cells to environmental factors. Characteristic of adaptive responses. Biopolym Cell. 1990; 6(4):32-42.
[141]
Solovyan VT. Adaptation of cells to environmental factors. Induction of genome rearrangemen. Biopolym Cell. 1991; 7(1):50-4.
[142]
Chattopadhyay D, Sharma AK. Chromosomal variation in callus tissues in culture of Coccinia indica, a dioecious cucurbit. Cytobios. 1992; 71(286—287):171-80.
[143]
Bakhtin YB. Genetic theory of cell populations. Leningrad, Nauka, 1980; 168 p.
[144]
Bakhtin YuB, Pinchuk VG, Shvemberg I, Butenko ZA. Clonal selection concept of tumor growth. K.: Naukova DUmaka, 1987; 216 p.
[145]
Brodsky VYa. Types of variation in cell population are similar to those in populations of organisms. Developmental biology of cardiac myocytes. Ontogenez. 1994; 25(5):29—43.
[146]
Mamaeva SE. The patterns of the karyotypic evolution of cells in culture. Tsitologiia. 1996;38(8):787-814.
[147]
Brown V. Genetics of bacteria. Moscow: Nauka, 1968. 446 p.