Biopolym. Cell. 2000; 16(1):5-15.
Reviews
Biological activity of lipopolysaccharides of gram-negative bacteria
- Taras Shevchenko National University of Kyiv
64, Volodymyrska Str., Kyiv, Ukraine, 01033
Abstract
Lipopolysaccharides are the main component of gram-negative bacteria's cell wall. The amphipatic molecule of LPS consists of lipid A, core oligosacchar hages to synthesize of proinflammatory (such as tumor necrosis factor, interleukins: IL-l, IL-6, IL-8) and antiinflammatory cytokines (interleukin-10), nitric oxide, antibodies, complement activation, antitumor activity. Thereto lipopolysaccharides own therapeutical effects. They (or some their structural compoiients) are successfull in the treatment of human's cancer, septic shock.
Full text: (PDF, in Ukrainian)
References
[1]
Nikaido H, Nakae T. The outer membrane of Gram-negative bacteria. Adv Microb Physiol. 1979;20:163-250.
[2]
Lugtenberg B, Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983;737(1):51-115.
[5]
Varbanets LD. The endotoxins of gram-negative bacteria: their structure and biological role. Mikrobiol Z. 1994;56(3):76-97.
[6]
Zakharova IIa. The molecular biological mechanisms of the functioning of microbial glycopolymers and carbohydrases. Mikrobiol Z. 1998;60(6):3-25.
[7]
Karpman D, Connell H, Svensson M, Scheutz F, Alm P, Svanborg C. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J Infect Dis. 1997;175(3):611-20.
[8]
Moran AP, Appelmelk BJ, Aspinal GO. Molecular nimicry of host structures by lipopolysaccharides of CamÂpylobacter and Helicobacter spp.: implications in pathogenesis. J. Endotoxin Res. 1996; 3(6):521-31.
[9]
Shimizu T, Yanagihara Y, Isshiki Y, Kawamata Y, Kondo S, Hisatsune K. Biological activities of lipopolysaccharide isolated from Vibrio cholerae o139, a new epidemic strain for recent cholera in indian subcontinent. Microbiol Immunol. 1994;38(6):471–4.
[10]
Onoue S, Niwa M, Isshiki Y, Kawahara K. Extraction and characterization of the smooth-type lipopolysaccharide from Fusobacterium nucleatum JCM 8532 and its biological activities. Microbiol Immunol. 1996;40(5):323-31.
[11]
Galdiero F, Sommese L, Gorga F, Galdiero E, Rizzo A, Ajello M. Toxic effect on human spermatozoa by Chlamydia trachomatis purified lipopolysaccharide. FEMS Microbiol Lett. 1994;115(2-3):197-200.
[12]
Schromm AB, Brandenburg K, Rietschel ET, Flad HD, Carroll SF, Seydel U. Lipopolysaccharide-binding protein mediates CD14-independent intercalation of lipopolysaccharide into phospholipid membranes. FEBS Lett. 1996;399(3):267-71.
[13]
Mackensen A, Galanos C, Wehr U, Engelhardt R. Endotoxin tolerance: regulation of cytokine production and cellular changes in response to endotoxin application in cancer patients. Eur Cytokine Netw. 1992;3(6):571-9.
[14]
Takada K, Ohno N, Yadomae T. Binding of lysozyme to lipopolysaccharide suppresses tumor necrosis factor production in vivo. Infect Immun. 1994;62(4):1171-5.
[15]
Zdorovenko GM, Vodyanik MA, Yakovleva LM, Chernyshov VP. Biological activities on mammals of Pseudomonas syringae lipopolysaccharides in connection with strucÂtural features of macromolecule. Galway: Eurocard, 1999: 134.
[16]
Varbanets LD, Prokopieva ED, Prokopiev AA, Ketlinsky SA. Study of induction of the factor of tumour and interleukin-1 necrosis under effect of glycopolymers isolated from Pseudomonas solanacearum and Clavibacter michiganense. Mikrobiol Zh. 1990; 52(5):17-23.
[17]
Ferrero E, Jiao D, Tsuberi BZ, Tesio L, Rong GW, Haziot A, Goyert SM. Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl Acad Sci U S A. 1993;90(6):2380-4.
[18]
Golenbock DT, Liu Y, Millham FH, Freeman MW, Zoeller RA. Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin. J Biol Chem. 1993;268(29):22055-9.
[19]
Lee JD, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ. Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. J Exp Med. 1992;175(6):1697-705.
[20]
Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431-3.
[21]
Pugin J, Sch?rer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993;90(7):2744-8.
[22]
Gallay P, Heumann D, Le Roy D, Barras C, Glauser MP. Lipopolysaccharide-binding protein as a major plasma protein responsible for endotoxemic shock. Proc Natl Acad Sci U S A. 1993;90(21):9935-8.
[23]
Hailman E, Vasselon T, Kelley M, Busse LA, Hu MC, Lichenstein HS, Detmers PA, Wright SD. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol. 1996;156(11):4384-90.
[24]
Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. Structure and function of lipopolysaccharide binding protein. Science. 1990;249(4975):1429-31.
[25]
Wurfel MM, Hailman E, Wright SD. Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein. J Exp Med. 1995;181(5):1743-54.
[26]
Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright SD. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med. 1994;180(3):1025-35.
[27]
Gegner JA, Ulevitch RJ, Tobias PS. Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. J Biol Chem. 1995;270(10):5320-5.
[28]
Abrahamson SL, Wu HM, Williams RE, Der K, Ottah N, Little R, Gazzano-Santoro H, Theofan G, Bauer R, Leigh S, Orme A, Horwitz AH, Carroll SF, Dedrick RL. Biochemical characterization of recombinant fusions of lipopolysaccharide binding protein and bactericidal/permeability-increasing protein. Implications in biological activity. J Biol Chem. 1997;272(4):2149-55.
[29]
Jarvis BW, Lichenstein H, Qureshi N. Diphosphoryl lipid A from Rhodobacter sphaeroides inhibits complexes that form in vitro between lipopolysaccharide (LPS)-binding protein, soluble CD14, and spectrally pure LPS. Infect Immun. 1997;65(8):3011-6.
[30]
Ohlsson BG, Englund MC, Karlsson AL, Knutsen E, Erixon C, Skribeck H, Liu Y, Bondjers G, Wiklund O. Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-kappaB to DNA and the subsequent expression of tumor necrosis factor-alpha and interleukin-1beta in macrophages. J Clin Invest. 1996;98(1):78-89.
[31]
Schnyder-Candrian S, Walz A. Neutrophil-activating protein ENA-78 and IL-8 exhibit different patterns of expression in lipopolysaccharide- and cytokine-stimulated human monocytes. J Immunol. 1997;158(8):3888-94.
[32]
Sonesson A, Zahringer V, Grimmeche D, Westphal O, Rietschel E. Bacterial endotoxins. Chemical structure and biological activity. Lung Biology in Health and Disease. Ed. C. Lenfant. New York: Wiley-Liss, 1993: 1-20.
[33]
Varbanets LD, Rybalko SL, Diadiun ST, Brovarskaia OS, Moskalenko NV. Glycopolymers of Clavibacter michiganense and Pseudomonas solanacearum--interferon inducers. Mikrobiol Zh. 1990;52(4):71-4.
[34]
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109-42.
[35]
Thiemermann C. The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol. 1994;28:45-79.
[36]
Zembala M, Siedlar M, Marcinkiewicz J, Pryjma J. Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur J Immunol. 1994;24(2):435-9.
[37]
Stoclet JC, Fleming Gray G, Julon-Schaeffer G, Schneider F, Schott C, Parratt I. R. Nitric oxide and endotoxemia. Circulation. 1993; 87(5):77-80.
[38]
Liang JF, Akaike T. Inhibition of lipopolysaccharide and cytokine mixture-mediated hepatocyte nitric oxide synthesis by dimethyl sulfoxide. Biochem Biophys Res Commun. 1997;239(2):517-21.
[39]
Liang JF, Akaike T. Role of metabolic intermediates in lipopolysaccharide/cytokine-mediated production of nitric oxide in isolated mouse hepatocytes. Biochem Biophys Res Commun. 1997;236(2):379-82.
[40]
Kong LY, McMillian MK, Hudson PM, Jin L, Hong JS. Inhibition of lipopolysaccharide-induced nitric oxide and cytokine production by ultralow concentrations of dynorphins in mixed glia cultures. J Pharmacol Exp Ther. 1997;280(1):61-6.
[41]
Kato N, Kido N, Ohta M, Naito S. Comparative studies on adjuvanticity of Klebsiella O3 lipopolysaccharide and its lipid A and polysaccharide fractions. Immunology. 1985;54(2):317-24.
[42]
Ishikawa Y, Kirikae T, Hirata M, Yoshida M, Haishima Y, Kondo S, Hisatsune K. Local skin response in mice induced by a single intradermal injection of bacterial lipopolysaccharide and lipid A. Infect Immun. 1991;59(6):1954-60.
[43]
Paeng N, Kido N, Schmidt G, Sugiyama T, Kato Y, Koide N, Yokochi T. Augmented immunological activities of recombinant lipopolysaccharide possessing the mannose homopolymer as the O-specific polysaccharide. Infect Immun. 1996;64(1):305-9.
[44]
Knirel' IuA, Kochetkov NK. Structure of lipopolysaccharides from gram-negative bacteria. I. Common characteristics of lipopolysaccharides and lipid A structure (Review). Biokhimiia. 1993;58(2):166-81.
[45]
Rietschel ET, Kirikae T, Schade FU, Ulmer AJ, Holst O, Brade H, Schmidt G, Mamat U, Grimmecke HD, Kusumoto S, et al. The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology. 1993;187(3-5):169-90.
[46]
Ogawa T. Chemical structure of lipid A from Porphyromonas (Bacteroides) gingivalis lipopolysaccharide. FEBS Lett. 1993;332(1-2):197-201.
[47]
Tanamoto K, Azumi S, Haishima Y, Kumada H, Umemoto T. Endotoxic properties of free lipid A from Porphyromonas gingivalis. Microbiology. 1997;143 ( Pt 1):63-71.
[48]
Miyajima K, Gomi N, Ikeda K, Achiwa K. Lipid A and Related Compounds. XXXIII. Synthesis and structure-activity relationships of N-Acylated L-Serine or L-Threonine-Containing D-Glucosamine derivatives as mimics of lipid a disaccharide. Chem Pharm Bull (Tokyo). 1997;45(6):1089–93.
[49]
Grabarek J, Her GR, Reinhold VN, Hawiger J. Endotoxic lipid A interaction with human platelets. Structure-function analysis of lipid A homologs obtained from Salmonella minnesota Re595 lipopolysaccharide. J Biol Chem. 1990;265(14):8117-21.
[50]
Brandenburg K, Mayer H, Koch MH, Weckesser J, Rietschel ET, Seydel U. Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem. 1993;218(2):555-63.
[51]
Saunier M, Malandrin L, Samson R. Distribution of Pseudomonas syringae pathovars into twenty-three O serogroups. Appl Environ Microbiol. 1996;62(7):2360-74.
[52]
Kocharova NA, Knirel YA, Romanowska A, Romanowska E, Makarenko TA, Edvabnaya LS, et al. Detection of common polysaccharide antigen of Pseudomonas aeruginosa with O-antiserum to Pseudomonas cerasi. FEMS Microbiol Lett.1991;76(2):69–74.
[53]
Petitjean F, Dournon E, Strosberg AD, Hoebeke J. Isolation, purification and partial analysis of the lipopolysaccharide antigenic determinant recognized by a monoclonal antibody to legionella pneumophila serogroup 1. Res Microbiol. 1990;141(9):1077–94.
[54]
Yakovleva L, Pasichnik L, Porembskaya N, Zdorovenko G, Vasilev V. Serotypic variability of Pseudomanas syringae pv. tabaci strains. Book of Abstr. 5th Int. Conf. on Pseudomonas syringae pathovars and related pathogens. Berlin, 1995: 297.
[55]
Zdorovenko GM, Knirel YuA, Yakovleva LM. Studies on the structure and biological activities of the Pseudomonas syringae lipopolysaccharides. XIX Int. Carbohydrate Symp. San Diego, 1998.
[56]
Zdorovenko G, Solyanik JL, Yakovleva L, Zakharova I, Gvozdyak R. O-antigens of Pseudomonas syringae. structural principles and biological activities. Book of Abstr. 5th Int. Conf. on Pseudomonas syringae pathovars and related pathoÂgens. Berlin, 1995: 23.
[57]
Knirel' IuA, Kochetkov NK. [Structure of lipopolysaccharides from gram-negative bacteria. III. Structure of O-specific polysaccharides]. Biokhimiia. 1994;59(12):1784-851. Review. Russian.
[58]
Knirel' IuA, Zdorovenko GM, Shashkov AS, Gubanova NIa, Iakovleva LM. [Antigenic polysaccharides of bacteria. 27. Structure of the O-specific polysaccharide chain of lipopolysaccharides from Pseudomonas syringae pv. atrofaciens 2399, phaesolica 120a and Pseudomonas holci 8299 belonging to serotype VI]. Bioorg Khim. 1988;14(1):92-9. Russian.
[59]
Flanagan MP, Battisti G, Michael JG. Oral administration of Escherichia coli in enteric coated microparticles induces serum antibodies against lipopolysaccharide antigens. Innate Immunity. 1996;3(6):481–9.
[60]
Reid RR, Prodeus AP, Khan W, Hsu T, Rosen FS, Carroll MC. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J Immunol. 1997;159(2):970-5.
[61]
Singh SP, Williams YU, Benjamin WH, Klebba PE, Boyd D. Immunoprotection by monoclonal antibodies to the porins and lipopolysaccharide of Salmonella typhimurium. Microb Pathog. 1996;21(4):249-63.
[62]
Skurnik M, Mikkola P, Toivanen P, Tertti R. Passive immunization with monoclonal antibodies specific for lipopolysaccharide (LPS) O-side chain protects mice against intravenous Yersinia enterocolitica serotype O:3 infection . APMIS. 1996;104(7-8):598–602.
[63]
Hoffman WD, Pollack M, Banks SM, Koev LA, Solomon MA, Danner RL, Koles N, Guelde G, Yatsiv I, Mouginis T, et al. Distinct functional activities in canine septic shock of monoclonal antibodies specific for the O polysaccharide and core regions of Escherichia coli lipopolysaccharide. J Infect Dis. 1994;169(3):553-61.
[64]
Fang IS, Wisniewski MA, Huntenburg CC, Knight LS, Bubbers JE, Schneidkraut MJ. Inhibition of lipopolysaccharide-associated endotoxin activities in vitro and in vivo by the human anti-lipid A monoclonal antibody SdJ5-1.17.15. Infect Immun. 1993;61(9):3873-8.
[65]
Masoud H, Moxon ER, Martin A, Krajcarski D, Richards JC. Structure of the variable and conserved lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzae serotype b strain Eagan. Biochemistry. 1997;36(8):2091-103.
[66]
Jacobs BC, Hazenberg MP, van Doorn PA, Endtz HP, van der Meche FGA. Cross-reactive antibodies against gangliosides and campylobacter jejuni lipopolysaccharides in patients with guillaln-barre or miller fisher syndrome. J Infect Dis. 1997;175(3):729–33.
[67]
Moran AP, Prendergast MM, Appelmelk BJ. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol. 1996;16(2):105-15.
[68]
Tateda K, Matsumoto T, Miyazaki S, Yamaguchi K. Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infect Immun. 1996;64(3):769-74.
[69]
Wesselius LJ, Nelson ME, Bailey K, O'Brien-Ladner AR. Rapid lung cytokine accumulation and neutrophil recruitment after lipopolysaccharide inhalation by cigarette smokers and nonsmokers. J Lab Clin Med. 1997;129(1):106-14.
[70]
Pennington HL, Hall PM, Wilce PA, Worrall S. Ethanol feeding enhances inflammatory cytokine expression in lipopolysaccharide-induced hepatitis. J Gastroenterol Hepatol. 1997;12(4):305-13.
[71]
Okutomi T, Nishizawa T, Inagawa H, Soma G, Minami M, Satoh M, Mizuno D. Inhibition of morphine dependence by a lipopolysaccharide from Pantoea agglomerans. Eur Cytokine Netw. 1992;3(4):417-20.
[72]
Rose JR, Christ WJ, Bristol JR, Kawata T, Rossignol DP. Agonistic and antagonistic activities of bacterially derived Rhodobacter sphaeroides lipid A: comparison with activities of synthetic material of the proposed structure and analogs. Infect Immun. 1995;63(3):833-9.
[73]
Gustafson GL, Rhodes MJ, Hegel T. Monophosphoryl lipid A as a prophylactic for sepsis and septic shock. Bacterial Endotoxins: Lipopolysaccharide: Fron genes to therapy. New York: WUey-liss. Inc., 1995: 567-79.
[74]
Stames CO. Coley's toxin in perspective. Nature. 1992; 357(6373):11-12.
[75]
Shear MJ, Turner F. C. Chemical treatment of tumors; isolation of hemorrhaning-producmg fraction from Serratia marcescens (Bacillus prodigious) culture filtrate Hi. Nat Cancer Inst. 1943; 4: 81-7.
[76]
Shimizu T, Iwamoto Y, Yanagihara Y, Ikeda K, Achiwa K. Combined effects of synthetic lipid A analogs or bacterial lipopolysaccharide with glucosaminylmuramyl dipeptide on antitumor activity against Meth A fibrosarcoma in mice. Int J Immunopharmacol. 1992;14(8):1415-20.
[77]
Abe H, Tani T, Shibata J, Kodama M. Induction of antitumor activities in spleen cells from mice and rats activated with lipopolysaccharide immobilized on beads. Cancer Immunol Immunother. 1992;35(1):39-45.
[78]
Lee K, Ewing JF, Sluss PM. Effect of bacterial lipopolysaccharide on growth of murine bladder cancer, MBT-2. Urol Res. 1989;17(5):285-8.
[79]
Blondiau C, Lagadec P, Lejeune P, Onier N, Cavaillon JM, Jeannin JF. Correlation between the capacity to activate macrophages in vitro and the antitumor activity in vivo of lipopolysaccharides from different bacterial species. Immunobiology. 1994;190(3):243-54.
[80]
Engelhardt R, Mackensen A, Galanos C, Andreesen R. Biological response to intravenously administered endotoxin in patients with advanced cancer. J Biol Response Mod. 1990;9(5):480-91.
[81]
Engelhardt R, Mackensen A, Galanos C. Phase I trial of intravenously administered endotoxin (Salmonella abortus equi) in cancer patients. Cancer Res. 1991;51(10):2524-30.
[82]
Mackensen A, Galanos C, Engelhardt R. Modulating activity of interferon-gamma on endotoxin-induced cytokine production in cancer patients. Blood. 1991;78(12):3254-8.
[83]
Hennemann B, Beckmann G, Eichelmann A, Rehm A, Andreesen R. Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon ? and lipopolysaccharide. Cancer Immunol Immunother. 1997;45(5):250–6.
[84]
Nishizawa T, Inagawa H, Oshima H, Okutomi T, Tsukioka D, Iguchi m, et al. Homeostasis as Regulated by Activated Macrophage. I. Lipopolysaccharide(LPS) from wheat flour: isolation, purification and some biological activities. Chemical & Pharmaceutical Bulletin. 1992;40(2):479–83.
[85]
Inagawa H, Nishizawa T, Noguchi K, Minamimura M, Takagi K, Goto S, Soma G, Mizuno D. Anti-tumor effect of lipopolysaccharide by intradermal administration as a novel drug delivery system. Anticancer Res. 1997;17(3C):2153-8.
[86]
Kasugai H, Ishiyama J, Jmar J, Fukuma E, Miyajima N, Kano N, Yamakawa T, Goto S, Kera J, Takeuchi S. A case report of far advanced gastric cancer with multiple liver metastasis (H3) treated with transarterial intermittent chemoÂtherapy and in radermal administration of low molecular lipopolysaccharide (LPSp) extracted from Pantoea agglomerÂans. Gan To Kagaku Ryoho. 1995; 22(11):1690-3.
[87]
Iwamoto I, Goto S, Kera J, Soma G, Takeuchi S, Nagata Y. Mechanistic analysis of high antitumor effect of intradermal administration of lipopolysaccharide from Pantoea Agglomerans. Med Oncol. 1996;13(2):103-9.
[88]
Tsukioka D, Nishizawa T, Miyase T, Achiwa K, Suda T, Soma G, Mizuno D. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiol Lett. 1997;149(2):239-44.
[89]
Inagawa H, Nishizawa T, Takagi K, Goto S, Soma G, Mizuno D. Antitumor mechanism of intradermal administration of lipopolysaccharide. Anticancer Res. 1997;17(3C):1961-4.
[90]
Varbanets LD, Shmal'ko IuP, Pridatko OE, Zhukova EV, Moskalenko NV. [The biological activity of Pseudomonas solanacearum polysaccharide]. Mikrobiol Z. 1995;57(2):80-5.