Biopolym. Cell. 1998; 14(1):54-61.
Structure and Function of Biopolymers
Stabilization of duplex and triplex complexes of oligothymidylate by covalently linked imidazophenazine glycoside
1Zozulya V. N., 1Blagoi Yu. P., 2Dubey I. Y., 2Fedoryak O. D., 1Shcherbakova A. S., 2Fedoryak D. M.
  1. B. I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine
    47, Prospekt Lenina, Kharkiv, Ukraine, 61103
  2. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094

Abstract

Decathymidylate containing nucleoside derivative of imidazophenazine (Pzn) at the 3'-end was synthesized. The effect of dye covalent attachment on the formation of complementary complexes of (dT)10, namely duplex with (dA)15 and triplex with (dA)15 and poly(dA)·poly(dT), was studied in buffer solutions of neutral pH at ionic strength μ–0,1 and 1 M. Thermal denaturation method using absorption and fluorescence spectroscopy was employed. It has been shown that Pzn residue strongly stabilized duplex and triplex complexes by dye chromophore intercalation into dA and dA·dT sequences. Melting point of complexes increased for 10–12 °C for duplex and 15–20 °C for triplex structures. Stabilizing effect of neutral imidazophenazine was comparable to that of cationic intercalating dyes linked to oligonucleotides via polymethylene linker.

References

[1] Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem. 1990;1(3):165-87.
[2] Beaucage SL, Iyer RP. The Functionalization of Oligonucleotides Via Phosphoramidite Derivatives. Tetrahedron. 1993;49(10):1925–63.
[3] Thuong NT, H?l?ne C. Sequence-Specific Recognition and Modification of Double-Helical DNA by Oligonucleotides. Angew Chem Int Ed Engl. 1993;32(5):666–90.
[4] Asseline U, Toulme F, Thuong NT, Delarue M, Montenay-Garestier T, H?l?ne C. Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site. EMBO J. 1984;3(4):795-800.
[5] Toulm? JJ, Krisch HM, Loreau N, Thuong NT, H?l?ne C. Specific inhibition of mRNA translation by complementary oligonucleotides covalently linked to intercalating agents. Proc Natl Acad Sci U S A. 1986;83(5):1227-31.
[6] Sun JS, Fran?ois JC, Montenay-Garestier T, Saison-Behmoaras T, Roig V, Thuong NT, H?l?ne C. Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc Natl Acad Sci U S A. 1989;86(23):9198-202.
[7] Lokhov SG, Podyminogin MA, Sergeev DS, Silnikov VN, Kutyavin IV, Shishkin GV, Zarytova VP. Synthesis and high stability of complementary complexes of N-(2-hydroxyethyl)phenazinium derivatives of oligonucleotides. Bioconjug Chem. 1992;3(5):414-9.
[8] Maltseva TV, Agback P, Repkova MN, Venyaminova AG, Ivanova EM, Sandstr?m A, Zarytova VF, Chattopadhyaya J. The solution structure of a 3'-phenazinium (Pzn) tethered DNA-RNA duplex with a dangling adenosine: r(5'G-AUUGAA3'):d(5'TCAATC3'-Pzn). Nucleic Acids Res. 1994;22(25):5590-9.
[9] Fox KR. Formation of DNA triple helices incorporating blocks of G.GC and T.AT triplets using short acridine-linked oligonucleotides. Nucleic Acids Res. 1994;22(11):2016-21.
[10] Mergny JL, Boutorine AS, Garestier T, Belloc F, Roug?e M, Bulychev NV, Koshkin AA, Bourson J, Lebedev AV, Valeur B, et al. Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res. 1994;22(6):920-8.
[11] Orson FM, Kinsey BM, McShan WM. Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides. Nucleic Acids Res. 1994;22(3):479-84.
[12] Miller PS, Bi G, Kipp SA, Fok V, DeLong RK. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Nucleic Acids Res. 1996;24(4):730-6.
[13] Marchand C, Bailly C, Nguyen CH, Bisagni E, Garestier T, H?l?ne C, Waring MJ. Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator. Biochemistry. 1996;35(15):5022-32.
[14] Makitruk VL, Yarmoluk SN, Shalamay AS, Alexeeva IV. Oligonucleotides modified with phenazine derivatives. Nucleic Acids Symp Ser. 1991;(24):244.
[15] Uhlmann E, Peyman A. Antisense oligonucleotides: a new therapeutic principle. Chem Rev. 1990;90(4):543–84.
[16] Froehler BC, Ng PG, Matteucci MD. Synthesis of DNA via deoxynucleoside H-phosphonate intermediates. Nucleic Acids Res. 1986;14(13):5399-407.
[17] Oligonucleotide synthesis: A practical approach. Ed. M. J. Gait. Oxford: IRL press, 1984. 218 p.
[18] Cassani GR, Bollum FJ. Oligodeoxythymidylate: polydeoxyadenylate and oligodeoxyadenylate: polydeoxythymidylate interactions. Biochemistry. 1969;8(10):3928-36.
[19] Zozulya V, Blagoi Y, L?ber G, Voloshin I, Winter S, Makitruk V, Shalamay A. Fluorescence and binding properties of phenazine derivatives in complexes with polynucleotides of various base compositions and secondary structures. Biophys Chem. 1997;65(1):55-63.
[20] Blagoi YuP, Zozulya VN, Voloshin IM, Makitruk VL, Shalamay AS, Shcherbakova AS. Investigation of phenazine derivatives interaction with DNA by polarized fluorescence method. Biopolym Cell. 1997; 13(1):22-29.
[21] Riley M, Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966;20(2):359-89.
[22] Martin FH, Uhlenbeck OC, Doty P. Self-complementary oligoribonucleotides: adenylic acid-uridylic acid block copolymers. J Mol Biol. 1971;57(2):201-15.
[23] Pilch DS, Levenson C, Shafer RH. Structural analysis of the (dA)10.2(dT)10 triple helix. Proc Natl Acad Sci U S A. 1990;87(5):1942-6.
[24] Burkhoff AM, Tullius TD. Structural details of an adenine tract that does not cause DNA to bend. Nature. 1988;331(6155):455-7.
[25] Godovikova TS, Zarytova VF, Lokhov SG, Mal'tseva TV, Sergeev DS. Synthesis, structure and properties of rubomycin derivatives of mono- and oligonucleotides. Bioorg Khim. 1990;16(10):1369-78.
[26] Hovorun DM. A structural-dynamic model on spontaneous semiopen states in DNA. Biopolym Cell. 1997; 13(1):39-45.