Biopolym. Cell. 1997; 13(6):445-452.
Structure and Function of Biopolymers
Structural features of 6-azacytidine and its derivatives: data of NMR and IR spectroscopies
1Samijlenko S. P., 1Alexeeva I. V., 1Palchykivs'ka L. H., 1Kondratyuk I. V., 1Stepanyugin A. V., 1Shalamay A. S., 1Hovorun D. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Study of 6-azaCyt, 6-azaC, a number of their derivatives and related compounds was conducted by IR and NMR spectrocsopies. Doublet splitting of amino group signal in NMR spectra of 6-azaCyt (unlike the cases of canonical base Cyt, nucleosides C and dC under the same experimental conditions) indicates nonequivalency of amino protons caused by greater asymmetry of electron structure which increases on ring substitutions at the 1 and 5 positions and increased barrier of amino group rotation. The dow field component of the doublet is only responsive to the 5-methyl substitution, as probably related to the involvement one of amino protons into an intramolecular H-bond with the N3 atom. Inverse (as compared to Cyt) specificity of interactions of 6-zaCyt with the amino acid carboxylic group and carboxylate-ion in anhydrous DMSO has been shown. The spectroscopy data support the conclusion that investigated compounds with nonsubstituted amino group exist as keto-amino tautomers in DMSO and solid state.

References

[1] ?koda J. Mechanism of Action and Application of Azapyrimidines. Prog Nucleic Acid Res Mol Biol. 1963;197–219.
[2] Chernetskii VP, Alekseeva IV. Anomalous nucleosides. VII. Symthesis of 6-azacitidine and its derivatives. Khim Geterotsikl Soed. 1967;(6):1109-13.
[3] Shalamai AS, Ognyanik SS, Alekseeva IV, Goncharenko VS.Process for the preparation of 6-aza cytidine. Pat. Ukraine UA 1785.29.10.93.. BI. N 3, 25.10.94.
[4] Petrusha NA. Anticancer properties of some anomalous nucleosides: Author. Dis. ... PhD. biol. Sciences. Kiev, 1969. 15 p.
[5] Bektemirov TA, Lintskaia GL, Chernetskii VP, Galegov GA. The inhibiting effect of 6-azacytidine on reproduction of smallpox virus in tissue culture. Vopr Med Khim. 1974;20(1):50-1.
[6] Galushko SV, Bulkina ZP, Petrusha NA, Shishkina IP. Pharmacokinetics of 6-azacytidine. Pharmaceutical Chemistry Journal. 1986;20(11):753–5.
[7] Petrusha NA. Toxico-pharmacological properties of 6-azacytidine. Farmakol Toksikol. 1987;50(2):75-6.
[8] Nosach LN, Diachenko NS, Butenko SI et al. Effect of 6-azacytidine for expression adenoviral genome. New approaches to chemotherapy of viral infections. Riga: Zinatne, 1991: 87-93.
[9] Nosach LN, Dyachenko NS, Shalamay AS, Alekseeva IV, Kushko LYa, Ozvinchuk II, Zhovnovataya VL, Butenko SL, Petrovskaya IA, Drannik GN. Antiadenovirus and immunostimulating actions of 6-azacylidine. Biopolym. Cell. 1996;12(1):75-85.
[10] Skrypal' IH, Onyshchenko AM, Tokovenko IP, Malynovs'ka LP, Panchenko LP, Havrylko LO, Shalama? AS, Aleksieieva IV. The validation of the possible use of monosugars and 6-azacytidine for the elimination of Mollicutes associated with HIV/AIDS from the human urogenital tract. Mikrobiol Z. 1996;58(5):80-5.
[11] Alexeeva IV, Palchikovskaya LI, Shalamay AS, Tarnavsky SS, Nosach LM, Zhiovnovataya VI, Dyachenko NS. N4-deriva tives of 6-azacytidine: synthesis and biological activity. Biopolym Cell. 1997; 13(4):285-90.
[12] Gut J, Jonas J, Pi?ha J. Nucleic acid components and their analogues. XLIX. Tautomeric structure of 6-azacytosine and its derivatives. Collect Czechoslov Chem Commun. 1964;29(6):1394–400.
[13] Alekseeva IV, Pal’chikovskaya LI, Shalamai AS, Ognyanik SS, Morgart NV, Petrusha NA. Synthesis of N1-substituted 6-azacytosines and their biological activity. Pharmaceutical Chemistry Journal. 1994;28(4):227–30.
[14] Dashevskaya TA, Shalamai AS. Synthesis of 2'Desoxy-6-azacytidine. Ukr. Khim Zh. 1992; (7):583-5.
[15] Alekseyeva IV, Sidorov GV, Shalamay AS, Tarnavskiy SS, Myasoyedov NF, Koval' NM, Chernetskiy VP. Synthesis of tritium-labeled 6-azauridine, and 6-azacytidine. Molecular biology techniques: Sb. nauch. tr. Kiyev: Nauk. dumka, 1986:52–8.
[16] Zheltovsky NV, Samoilenko SA, Kolomiets IN, Kondratyuk IV, Stepanyugin AV. Interactions of methyl and glycosyl derivatives of pyrimidine nucleotide bases with amino acid carboxylic group. Biopolym Cell. 1994; 10(6):45-51.
[17] Zheltovskiy NV, Samoylenko SA, Kolomiets IN, Kondratiuk IV. Interaction of nucleobases with the amino acids carboxyl grouP in DMSO: a model of Point Protein-nucleic contacts. Doklady Akad Nauk Ukr SSR. Ser B. 1988; (8):68-71.
[18] Zheltovsky NV, Samoilenko SA, Gubaidullin MI, Kondratyuk IV. Vibrational spectrum and structure of the cytosine complex with N-formyl glycine in the solid phase. Doklady Akad Nauk Ukr SSR. Ser B. 1988; (5):75-8.
[19] Kondratyuk IV, Kolomiets IN, Samoilenko SA, Zheltovsky NV. A study of complexes between cytosine bases and amino acid carboxylic group by NMR spectroscopy. Biopolym Cell. 1989; 5(6):21-25.
[20] Govorun DN, Mishchuk YaR, Zheltovsky NV. Low-frequency phonon raman spectra of nucleic acid constituents: pyrimidine bases. Biopolym Cell. 1990; 6(3):31-9.
[21] Govorun DN, Mishchuk YaR, Zheltovsky NV. Low-frequency raman spectra of some methylated components of nucleic acisds: 1-methyl derivatives of pyrimidine bases. Biopolym Cell. 1991; 7(1):55-62.
[22] Govorun DM, Kondratyuk IV, Mishchuk YaR, Zheltovskyi MV. The nonequavalence of amine hydrogens in canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1995; (8):130-2.
[23] Govorun DM, Kondratyuk IV. Anisotropic rotation of amino groups in canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1996:(10):151-4.
[24] Govorun DM, Mishchuk YaR, Kondratyuk IV, Zheltovsky MV. Intramolecular cooperative hydrogen bonds in nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1996;(8):141-4.
[25] The chemistry of the amino group. Ed. S. Patai. Ixmdon; New York; Sydney: Intersc. Publ., 1968. 253 p.
[26] Orville-Thomas WJ, Parsons AE, Ogden CP. NH2-stretching frequencies in primary amines. J Chem Soc. 1958;1047-9.
[27] Krueger PJ. The vibrational mechanism of the fundamental NH 2 stretching vibrations in anilines. Can J Chem. 1962;40(12):2300–16.
[28] Iogansen AV. Fermi resonance and N (AH) band structure in complexes with hydrogen bond. Optika i spektroskopiya. Leningrad: Nauka, 1967;228-31.
[29] Zhukova EL, Shmanko II. Effect of Hydrogen Bonding on the Vibrations of the NH2 Group. I: Frequencies of Valence Vibrations. Optika i spektroskopiya. 1968; 25(4): 500—505.
[30] Zhukova EL, Shmanko II. Effect of Hydrogen Bonding on the Vibrations of the NH2 Group. II: Intensities of Valence Vibration Bands. Optika i spektroskopiya. 1969; 26(4): 532.
[31] Zhukova EL, Shmanko II. Effect of Hydrogen Bonding on the Vibrations of the NH2 Group. III. Internal deformation vibration. Optika i spektroskopiya. 1972; 32(3):514.
[32] Iogansen AV, Rassadin BV, Bochkareva MN, Dorokhov VA, Mikhailov BM. Hydrogen bonds and Fermi resonance in the infrared spectra of (3-aminopropyl)dibutylborane with bases. J Appl Spectrosc. 1971;15(6):1616–22.
[33] Wolff H, Mathias D. Hydrogen bonding and Fermi resonance of aniline. J Phys Chem. 1973;77(17):2081–4.
[34] Wolff H, Hagedorn W. Hydrogen bonding and Fermi resonance of mixed adducts of aniline. the behavior of NH2 deformation vibrations. J Phys Chem. 1980;84(18):2335–7.
[35] Denisov GS, Kuzina LA, Smolyanskii AL. Infrared spectra and energetics of complexes of nonafluoro-tert-butylamine with proton acceptors. J Appl Spectrosc. 1988;48(3):280–4.
[36] Denisov GS, Kuzina LA, Smolyanskii AL, Furin GG. Nonadditivity of the energies of hydrogen bonds of fluorinated aromatic amines with proton acceptors. J Appl Spectrosc. 1990;52(3):322–7.
[37] Govorun DN, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. Mirror symmetrical conformational states of canonical nucleic acid bases. Doklady Akad Nauk Ukrainy. 1992; (2):66-9.
[38] Govorun DM, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Zheltovsky MV. About nonplanarity and dipole nonstability of canonical nucleotide bases methylated at the glycoside nitrogen. Dopovidi Nats Akad Nauk Ukrainy. 1995; (6):117-9.
[39] Hovorun DM, Mishchuk YaR, Kondratyuk IV. On a quantum-chemical nature of a stereochemical nonrigidity of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):5-12.
[40] Hovorun DM, Mishchuk YaR, Kondratyuk IV. Topological features of potential energy hypersurface of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):13-7.
[41] Hovorun DM. A structural-dynamic model on spontaneous semiopen states in DNA. Biopolym Cell. 1997; 13(1):39-45.
[42] Govorun DM, Mischuk YaR, Kondratyuk IV, Zheltovs'kyi MV. Dynamic stereo isomerism of Watson-Crick nucleotide base pairs. Dopovidi Nats Akad Nauk Ukrainy. 1995;(11):121-3.
[43] Kwiatkowski JS, Leszczy?ski J. Molecular Structure and Vibrational IR Spectra of Cytosine and Its Thio and Seleno Analogues by Density Functional Theory and Conventional ab Initio Calculations. J Phys Chem. 1996;100(3):941–53.
[44] Lapinski L, Nowak MJ, Fulara J, Les A, Adamowicz L. Matrix isolation and ab initio theoretical studies of the IR spectrum of 5-methylcytosine. J Phys Chem. 1990;94(17):6555–64.
[45] Johansen AV. Infrared spectroscopy and spectral determination of the energy of the hydrogen bond. hydrogen bond. M.: Nauka, 1981; 112-55.
[46] Hovorun DM, Kondratyuk IV. Gas-phase acid-alkaline properties of canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1998; (1):207-12.
[47] Hovorun DM, Mischuk YaR. Power intermolecular hydrogen bonds in crystals and spivkrystalizatah DNA bases: a study using spectral calorimetry. Ukr Fiz Zh. 1997; 42(8):933-8.
[48] Samijlenko SP, Kolomiets IM, Kondratyuk IV, Stepanyugin AV. Model considerations on physico-chemical nature of protein-nucleic acid contacts through amino acid carboxylic groups: spectroscopic data. Biopolym Cell. 1998;14(1):47-53.
[49] Kondratyuk IV. Investigation of physico-chemical nature of elementary processes of molecular recognition by NMR, vibrational spectroscopy and computer simulation Kyiv: Ph. D. Thesis, 1996. 19 p.
[50] Samijlenko SP, Kolomiets’ IN, Kondratyuk IK, Stepanyugin AV. Physico-chemical features of complexes modelling recognition of nucleic acid components by amino acids' carboxylic group: data of spectroscopic experiments. Spectroscopy of Biological Molecules: Modern Trends, An­nex. Madrid: Univ. press, 1997:69—70.