Biopolym. Cell. 1997; 13(3):213-217.
Structure and Function of Biopolymers
An activity of α-chymotrypsin immobilized by bilayer phospholipid membranes
1Shapiro Yu. E., 1Smirnova A. V., 1Makarevich I. F., 1Ulesov A. V.
  1. A. V. Bogatsky's Physico-chemical Institute, NAS of Ukraine
    86, Lustdorfskaya dor., Odessa, Ukraine, 65080
  2. State Scientific Center of Drugs
    33 Astronomichna str., Kharkiv, Ukraine, 61085

Abstract

The kinetic parameters for enzymatic hydrolysis of classic substrate, n-nitrophenyl acetate, in presence of α-chymotrypsin immobilized and nonimmobilized by phospholipid bilayer liposomes are essentially different. The immobilization of α-chymotrypsin tends to increase of the value of Michaelis constant and to decrease of the value of maximum, rate by a factor of 2.3. These distinctions are conditioned by diffusional factors arised with immobilization of enzyme. Indeed, the value of appropriate Michaelis constant calculated according to the diffusion coefficient for components of reaction medium is practically in agreement with experimental constant for α-chymotrypsin immobilized by phospholipid vesicles.

References

[1] Martinek K. The successes of bioorganic catalysis. Eds. IV. Berezin, K Martinek M.: Izd MGU, 1979. 105 p.
[2] Martinek K, Levashov AV, Kliachko NL, Berezin IV. Catalysis by water soluble enzymes in organic solvents Stabilizatin of enzymes against the denaturation (inactivation) when they are included in inversed mycells of surface-active substance. Dokl Akad Nauk SSSR. 1977;236(4):920-3.
[3] Shapiro YuE, Pykhteva EG, Levashov AV, Kliachko NL. Morphology of fibrillar facing micelles and lyotropic phases Bridge 96 in cyclohexane, encapsulating albumin. Biologicheskie Membrany. 1993; 10(4): 397-408.
[4] Liposomes in Biological Systems. Eds. G Greodiaris, A. Allison M.: Meditsina, 1983. 156 p.
[5] Khmel'nitskii YuL, Levashov AV, Klyachko NL, Martinek K. A microheterogeneous medium for chemical (enzymic) reactions based on a colloidal solution of water in an organic solvent. Russ Chem Rev. 1984; 53 (4):319–31.
[6] Berezin IV, Varfolomeev SD. Biokinetics. M.: Nauka, 1979. 127 p.
[7] Berezin IV, Klibanov AM, Martinek K. Kinetic and thermodynamic aspects of catalysis by immobilised enzymes. Russ Chem Rev. 1975; 44 (1):9–25.
[8] Chattaway FD. CCCXLII. Acetylation in aqueous alkaline solutions. J Chem Soc. 1931;9:2495-9.
[9] Drouet X, Douay L, Giarratana M-C, Baillou C, Gorin N-C, Salmon C, et al. Human liquid bone marrow culture in serum-free medium. Br J Haematol. 1989;73(2):143-7.
[10] Krauth W, Werner D. Analysis of the most tightly bound proteins in eukaryotic DNA. Biochim Biophys Acta. 1979;564(3):390-401.
[11] Berezin IV, Martinek K. Basics of of Physical Chemistry of enzymatic catalysis. M.: Vyschaya Shkola. 1977; 250 p.
[12] W?hlby S, Christiansen EN, Kvamme E, Ohlson R, Shimizu A. Rate of Acetylation of alpha-Chymotrypsin by p-Nitrophenyl [1-14C] Acetate Studied by Isolation of [14C]-Acetyl Enzyme. Acta Chem Scand. 1970;24(7):2429-34.
[13] Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971;10(7):1111-20.
[14] Cain Sautillan G, Blaisie JK. Membrane Research. New York: Acad, press, 1978.
[15] Triven MD. Immobilized enzymes. An introduction and applications in biotechnology. John Wiley and Sons New York. 1980
[16] Goldman R, Kedem O, Katchalski E. Papain--collodion membranes. II. Analysis of the kinetic behavior of enzymes immobilized in artificial membranes. Biochemistry. 1968;7(12):4518-32.