Biopolym. Cell. 1996; 12(5):66-71.
PCR amplification, cloning and sequencing of cDNA fragment encoding a nucleotide binding domain of mammalian tyrosyl-tRNA synthetase
1Levanets O. V., 1Naidenov V. G., 1Woodmaska M. I., 1Odynets K. A., 1Matsuka G. H., 1Kornelyuk A. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

cDNA fragment encoding the N-terminal nucleotide binding domain (Rossmann fold) of mammalian tyrosyl-tRNA synthetase has been PCR-amplified, cloned and sequenced. The unique variant of conservative HIGH-like motif, HVA Y, where glycine residue was substituted by alanine, has been observed for the first time.

References

[1] Kisselev LL, Favorova OO, Lavrik OI. Biosynthesis of proteins from amino acids to aminoacyl-tRNA. Moscow, Nauka, 1984; 408 p.
[2] Schimmel P. Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. Trends Biochem Sci. 1991;16(1):1-3. Review.
[3] Moras D. Aminoacyl-tRNA synthetases. Curr Biol. 1992; 2: 138-42.
[4] Rossmann MG, Moras D, Olsen KW. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974;250(463):194-9.
[5] Bhat TN, Blow DM, Brick P, Nyborg J. Tyrosyl-tRNA synthetase forms a mononucleotide-binding fold. J Mol Biol. 1982;158(4):699-709.
[6] Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990;347(6289):203-6.
[7] Cusack S, Berthet-Colominas C, H?rtlein M, Nassar N, Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990;347(6290):249-55.
[8] Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[9] Korneliuk AI, Kurochkin IV, Matsuka GKh. Tyrosyl-tRNA synthetase from the bovine liver. Isolation and physico-chemical properties. Mol Biol (Mosk). 1988;22(1):176-86.
[10] Ribkinska TA, Vartanyan OA, Filonenko VV, Sidorik LL, Kornelyuk AI, Beresten SF. A method for selection of hybridomas, secreting monoclonal antibodies against tyrosyl-tRNA synthetase, based on monitoring of the enzymatic activity. Biopolym Cell. 1990; 6(4):97-101
[11] Ribkinska TA, Kornelyuk AI, Beresten SF, Matsuka GKh. The immunochemical approach for studies of structure tyrosyl-tRNA synthetase from bovine liver. Biopolym Cell. 1991; 7(5):33-6.
[12] Gnatenko DV, Korneliuk AI, Matsuka GKh. Tyrosyl-tRNA-synthetase from bovine liver. Functional role of histidine residues. Bioorg Khim. 1991;17(8):1033-7.
[13] Gnatenko DV, Korneliuk AI, Lavrik OI. Chemical modification of lysine residues in tyrosyl-tRNA-synthetase from cattle liver using pyridoxal-5'-phosphate. Biokhimiia. 1991;56(11):1984-90.
[14] Nishimura A, Morita M, Nishimura Y, Sugino Y. A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res. 1990;18(20):6169.
[15] Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7(6):1513-23.
[16] Chow CM, RajBhandary UL. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis. J Biol Chem. 1993;268(17):12855-63.
[17] Barker DG, Bruton CJ, Winter G. The tyrosyl-tRNA synthetase from Escherichia coli. Complete nucleotide sequence of the structural gene. FEBS Lett. 1982;150(2):419-23.
[18] Winter G, Koch GL, Hartley BS, Barker DG. The amino acid sequence of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Eur J Biochem. 1983;132(2):383-7.
[19] Brick P, Bhat TN, Blow DM. Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol. 1989;208(1):83-98.