Biopolym. Cell. 1985; 1(6):318-322.
Short Communications
Interaction of the tRNAPhe-C-C-A(3'NH)-Phe with a small subunit of Escherichia coli
- The Department of Plant Genetics, Academy of Sciences of the Moldavian SSR
Kishinev, USSR - B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
Gatchina, Leningrad distr., USSR
Abstract
The thermodynamic parameters of binding of tRNAPhe-C-C-A(3'NH)Phe (a stable analogue of aminoacyl-tRNA) to SOS ribosomal subunit are studied. In the presence of template 30S subunit binds 2 molecules of tRNAphe-C-C-A(3'NH)-Phe to the acceptor (A) and peptidyl (P) sites. The affinity constants of the stable analogue of aminoacyl-tRNA for tRNA-binding sites of the small ribosomal subunit are measured: KaP=(3.5±0.35). 108 M–1 and KaA~3-107 M–1. The results obtained indicate the great similarity in binding characteristics between Phe-tRNAphe and tRNAPhe-C—C—A(3'NH)-Phe. It permits applying tRNAPhe-C-C-A(3'NH)-Phe as a very convenient model to study interaction between aminoacyl-tRNA and SOS subunit.
Full text: (PDF, in Russian)
References
[1]
Sprinzl M, Cramer F. The -C-C-A end of tRNA and its role in protein biosynthesis. Prog Nucleic Acid Res Mol Biol. 1979;22:1-69.
[2]
Fraser TH, Rich A. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc Natl Acad Sci U S A. 1973;70(9):2671-5.
[3]
Kirillov SV, Makhno VI, Semenkov YP. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA. Nucleic Acids Res. 1980;8(1):183-96.
[4]
Katunin VI, Semenkov YP, Makhno VI, Kirillov SV. Comparative study of the interaction of polyuridylic acid with 30S subunits and 70S ribosomes of Escherichia coli. Nucleic Acids Res. 1980;8(2):403-21.
[5]
Sprinzl M, Sternbach H. Enzymic modification of the C-C-A terminus of tRNA. Methods Enzymol. 1979;59:182-90.
[6]
Peshin NN, Kirillov SV. Nature of the heterogeneity of the 30S ribosomal subunits in vitro. II. Two types of inactivation of the 30S subunits of Escherichia coli ribosomes. Mol Biol (Mosk). 1979;13(4):752-60.
[7]
Kirillov SV, Makarov EM, Semenkov YuP. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983;157(1):91-4.
[8]
Rheinberger HJ, Sternbach H, Nierhaus KH. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981;78(9):5310-4.
[9]
Grajevskaja RA, Ivanov YV, Saminsky EM. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982;128(1):47-52.
[10]
Kirillov SV. Mechanisms codon anticodon interaction in ribosomes. In the book.: Results of science and technology. VINITI (Series Biological Chemistry, vol.18), 1983, p. 5-97.
[11]
Kirillov SV, Semenkov IuP. Interaction of tRNA with ribosomes. Mol Biol (Mosk). 1984;18(5):1249-63.
[12]
Kirillov SV, Kemkhadze KS, Makarov EM, Makhno VI, Odintsov VB, Semenkov YP. Mechanism of codon-anticodon interaction in ribosomes: codon-anticodon interaction of aminoacyl-tRNA at the ribosomal donor site. FEBS Lett. 1980;120(2):221-4.
[13]
Odom OW, Stoffler G, Hardesty B. Movement of the 3'-end of 16 S RNA towards S21 during activation of 30 S ribosomal subunits. FEBS Lett. 1984;173(1):155-8.
[14]
Chiaruttini C, Milet M, Hayes D. Structural differences between active and inactive 30 S ribosomal subunits revealed by RNA-protein crosslinking. FEBS Lett. 1984;173(1):90-4.
[15]
Ohsawa H, Gualerzi C. Chemical modification in situ of Escherichia coli 30 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the aminoacyl-tRNA and mRNA binding sites. J Biol Chem. 1983;258(1):150-6.
[16]
Uhlenbeck OC, Lowary PT, Wittenberg WL. Role of the constant uridine in binding of yeast tRNAPhe anticodon arm to 30S ribosomes. Nucleic Acids Res. 1982;10(11):3341-52.
[17]
Pongs O, Wrede P, Erdmann VA, Sprinzl M. Binding of complementary oligonucleotides to aminoacylated tRNAPhe from yeast. Biochem Biophys Res Communs, 1976; 71(4):1025-33.
[18]
Crothers D. M., Cole P. E. Conformational changes of tRNA. In: Transfer RNA. Ed. S. Altman. London : MIT press, 1978, p. 197-247.
[19]
Gassen HG. Ligand-induced conformational changes in ribonucleic acids. Prog Nucleic Acid Res Mol Biol. 1980;24:57-86.
[20]
Nagamatsu K, Miyazawa Y. Magnesium cation induced conformational change of yeast tRNAPhe as studied by singlet-singlet energy transfer. J Biochem. 1983;94(6):1967-71.