Biopolym. Cell. 2012; 28(6):468-476.
Біоорганічна хімія
Комп’ютерне конструювання нових інгібіторів адсорбції ВІЛ-1, які блокують петлю V3 білка gp120 оболонки вірусу
1Андріанов А. М., 2Аніщенко І. В., 1Кисіль М. А., 1Корноушенко Ю. В., 1Миколайович В. А., 3Єремін В. Ф., 3Кучеров І. І., 2Тузиков А. В.
  1. Інститут біоорганічної хімії НАН Білорусі
    вул. Академіка В. Ф. Купревича, 5, корп.2, Мінськ, Республіка Білорусь, 220141
  2. Об’єднаний інститут проблем інформатики НАН Білорусі
    вул. Сурганова, 6, Мінськ, Республіка Білорусь, 220012
  3. Республіканський науково-практичний центр епідеміології і мікробіології
    вул. Філімонова, 23, Мінськ, Республіка Білорусь, 220114

Abstract

Мета. На основі аналізу міжмолекулярних взаємодій гліколіпіду β-галактозилцераміду (β-GalCer) з центральною областю петлі V3 білка gp120 оболонки вірусу здійснити комп’ютерне конструювання водорозчинного аналога β-GalCer – потенційного інгібітора адсорбції ВІЛ-1 – з наступним синтезом цього похідного гліколіпіду і тестуванням на противірусну активність. Методи. Комп’ютерне моделювання: квантово-хімічні розрахунки, молекулярний докінг, молекулярна динаміка і оцінка вільної енергії утворення надмолекулярних структур, а також методи хімічного синтезу та тестування на анти-ВІЛ активність. Результати. Для сконструйованого аналога β-GalCer передбачено високу ймовірність прояву противірусної активності. Дані молекулярного моделювання підтверджено результатами первинних медичних випробувань синтезованої хімічної сполуки. Висновки. Отриманий аналог β-GalCer можна розглядати як базову структуру для моделювання його більш ефективних модифікованих форм і подальшого відбору молекул, перспективних для синтезу і тестування на анти-ВІЛ активність.
Keywords: петля V3 білка gp120 ВІЛ-1, гліколіпіди, комп’ютерне моделювання, хімічний синтез, лікарські препарати проти СНІДу

References

[1] Sirois S., Sing T., Chou K. C. 2005 HIV-1 gp120 V3 loop for structure-based drug design Curr. Protein Pept. Sci 6, N 5:413–422.
[2] Andrianov A. M. 2011 Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving Expert Opin. Drug Discov 6, N 4:419–435.
[3] LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dressman G. R., Boswell R. N., Shadduk P., Holley L. H., Karplus M., Bolognesi D. P., Matthews T. J., Emini E. A., Putney S. D. 1990 Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant Science 249, N 4971:932–935.
[4] Andrianov A. M., Anishchenko I. V. 2009 Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design J. Biomol. Struct. Dynam 27, N 2:179–193.
[5] Andrianov A. M., Anishchenko I. V., Tuzikov A. V. 2011 Discovery of novel promising targets for anti-AIDS drug developments by computer modeling: application to the HIV-1 gp120 V3 loop J. Chem. Inf. Model 51, N 10:2760–2767.
[6] Jiang X., Burke V., Totrov M., Williams C., Cardozo T., Gorny M. K., Zolla-Pazner S., Kong X. P. 2010 Conserved structural elements in the V3 crown of HIV-1 gp120 Nat. Struct. Mol. Biol 17, N 8:955–961.
[7] Bhat S., Spitalnik S. L., Gonzalez-Scarano F., Silberberg D. H. 1991 Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120 Proc. Natl Acad. Sci. USA 88, N 16:7131–7134.
[8] Fantini J., Hammache D., Delezay O., Yahi N., Andre-Barres C., Rico-Lattes I., Lattes A. 1997 Synthetic soluble analogs of galactosylceramide (GALCER) bind to the V3 domain of HIV-1 gp120 and inhibit HIV-1-induced fusion and entry J. Biol. Chem 272, N 11:7245–7252.
[9] Yahi N., Sabatier J. M., Nickel P., Mabrouk K., Gonzalez-Scarano F., Fantini J. 1994 Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells J. Biol. Chem 269, N 39:24349–24353.
[10] Yahi N., Sabatier J. M., Baghdiguian S., Gonzalez-Scarano F., Fantini J. 1995 Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line J. Virol 69, N 1:320–325.
[11] Hammache D., Pironi G., Yahi N., Delezay O., Koch N., Lafont H., Tamalet C., Fantini J. 1998 Specific interaction of HIV-1 and HIV2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3 J. Biol. Chem 273, N 14:7967–7971.
[12] Garg H., Francella N., Tony K. A., Augustine L. A., Barchi J. J. Jr., Fantini J., Puri A., Mootoo D. R., Blumenthal R. 2008 Glycoside analogs of beta-galactosylceramide, a novel class of small molecule antiviral agents that inhibit HIV-1 entry Antiviral Res 80, N 1:54–61.
[13] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. 2000 The protein data bank Nucleic Acids Res 28, N 1:235–242.
[14] Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Windus T. L., Dupuis M., Montgomery J. A. 1993 General Atomic and Molecular Electronic Structure System (GAMESS) J. Comput. Chem 14:1347–1363.
[15] Berendsen H. J. C., van der Spoel D., van Drunen R. 1995 GROMACS: A message-passing parallel molecular dynamics implementation Comp. Phys. Commun 91, N 1–2:43–56.
[16] Taylor R. D., Jewsbury P. J., Essex J. W. 2002 A review of proteinsmall molecule docking methods J. Comput. Aided Mol. Des 16, N 3:151–166.
[17] Massova I., Kollman P. A. 1999 Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies J. Am. Chem. Soc 121, N 36:8133–8143.
[18] Gordon M. S., Schmidt M. W. 2005Advances in electronic structure theory: GAMESS a decade later Theory and applications of computational chemistry: the first forty years / Eds C. E. Dykstra et al Amsterdam: Elsevier,:1167–1189.
[19] Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. 2004 Development and testing of a general amber force field J. Comput. Chem 25, N 9:1157–1174.
[20] He J. H. 2004 A modified Newton-Raphson method Num. Methods Biomed. Eng 20, N 10:801–805.
[21] Bayly C. I., Cieplak P., Cornell W. D., Kollman P. A. 1993 Well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: the RESP model J. Phys. Chem 97, N 40:10269–10280.
[22] Cornell W. D., Cieplak P., Bayly C. I., Kollmann P. A. 1993 Application of the RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of salvation J. Am. Chem. Soc 115:9620–9631.
[23] Case D. A., Darden T., Cheatham T. E., III, Simmerling C. L., Wang J., Duke R. E., Luo R., Crowley M., Walker R. C., Zhang W., Merz K. M., Wang B., Hayik S., Roitberg A., Seabra G., Kolossvary I., Wong K. F., Paesani F., Vanicek J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Yang L., Tan C., Mongan J., Hornak V., Cui G., Mathews D. H., Seetin M. G., Sagui C., Babin V., Kollman P. A. 2008 AMBER 10 San Francisco: Univ. of California,
[24] Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F., Dinola A., Haak J. R. 1984 Molecular dynamics with coupling to an external bath J. Chem. Phys 81, N 8:3684–3690.
[25] Lang P. T., Brozell S. R., Mukherjee S., Pettersen E. F., Meng E. C., Thomas V., Rizzo R. C., Case D. A., James T. L., Kuntz I. D. 2009 DOCK 6: Combining techniques to model RNA-small molecule complexes RNA 15, N 6:1219–1230.
[26] Ablameyko S. V., Abramov S. M., Anishchanka U. V., Medvedev S. V., Paramonov N. N., Tchij O. P. 2005 SKIF supercomputer configurations Minsk: United Institute of Informatics Problems, 170 p.
[27] Radin N. S. Preparative isolation of cerebrosides (galactosyl and glucosyl ceramide) J. Lipid Res 1976 17, N 3:290–293.
[28] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays J. Immunol. Methods 1983 65, N 1–2:55–63.
[29] Kucherov I. I., Rytik P. G., Podolskaya I. A. Current problems of human's infectious pathology (virology, microbiology, immunology, epidemiology, clinic) Infectious diseases 1998–2000 (20–22 Nov. 2001, Minsk) Minsk, 2001:195–200.
[30] Tian H., Lan C., Chen Y. H. Sequence variation and consensus sequence of V3 loop on HIV-1 gp120 Immunol. Lett 2002 83, N 3:231–233.
[31] Kumar R. M., Elango M., Subramanian V. Carbohydrate-aromatic interactions: the role of curvature on XH...pi interactions J. Phys. Chem. A 2010 114, N 12:4313–4324.
[32] Fantini J., Yahi N. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases Expert Rev. Mol. Med 2010 12, e27.
[33] del Carmen Fernandez-Alonso M., Canada F. J., Jimenez-Barbero J., Cuevas G. Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions J. Am. Chem. Soc 2005 127, N 20:7379–7386.
[34] Diaz M. D., Fernandez-Alonso M. C., Cuevas G., Canada F.J., Jimenez-Barbero J. On the role of aromatic-sugar interactions in the molecular recognition of carbohydrates: A 3D view by using NMR Pure Appl. Chem 2008 80, N 8:1827–1835.
[35] Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. Inhibition of entry of HIV1 in neural cell lines by antibodies against galactosyl ceramide Science 1991 253, N 5017:320–323.
[36] Jones J., Whitford W., Wagner F., Kutsch O. Optimization of HIV1 infectivity assays Biotechniques 2007 43, N 5:589–590, 592, 594.
[37] Kiptoo M. K., Mpoke S. S., Ng'ang'a Z. W. New indirect immunofluorescence assay as a confirmatory test for human immunodeficiency virus type 1 East Afr. Med. J 2004 81, N 5:222–225.