Biopolym. Cell. 2011; 27(4):249-257.
Огляди
Молекулярні механізми розвитку клітинної інсулінорезистентності
1Ракша Н. Г., 1Савчук О. М., 1Остапченко Л. І.
  1. Навчально-науковий центр «Інститут біології»
    Київського національного університету імені Тараса Шевченка
    вул. Володимирська, 64/13, Київ, Україна, 01601

Abstract

Розглянуто деякі патогенетичні механізми, які обумовлюють формування стану клітинної інсулінорезистентності на рецепторному та пострецепторному рівнях. Особливу увагу приділено аналізу факторів, що впливають на функціонування компонентів фосфатидилінозитольної ланки інсулінового сигнального каскаду.
Keywords: інсулінорезистентність, субстрати інсулінового рецептора, фосфатидилінозитол-3-кіназа, серинове фосфорилювання

References

[1] Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus World J. Diabetes 2010 1, N 3 P. 68–75.
[2] Matthaei S., Stumvoll M., Kellerer M., Haring H. U. Pathophysiology and pharmacological treatment of insulin resistance Endocrin. Rev 2000 21, N 6 P. 585–618.
[3] Lin Y., Sun Z. Current views on type 2 diabetes J. Endocrinol 2010 204, N 1 P. 1–11.
[4] Denton R. M., Tavary J. M. Molecular basis of insulin action on intracellular metabolism Int. textbook of diabetes mellitus (2nd ed.) / Eds K. G. M. M. Alberti, P. Zimmet, R. A. Defronzo, H. (Hon) Keen) New York: John Wiley & Sons, 1997 P. 469– 488.
[5] Belfiore A., Frasca F., Pandini G., Sciacca L., Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease Endocrinol. Rev 2009 30, N 6 P. 586–623.
[6] Bevan P. Insulin signalling J. Cell Sci 2001 114, N 8 P. 1429–1430.
[7] Choi K., Kim Y. Molecular mechanism of insulin resistance in obesity and type 2 diabetes Korean J. Intern. Med 2010 25, N 2 P. 119–129.
[8] Leclercq I. A., Da Silva Morais A., Schroyen B., Van Hul N., Geerts A. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences J. Hepatol 2007 47, N 1 P. 142–156.
[9] Virkamaki A., Ueki K., Kahn C. R. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance J. Clin. Invest 1999 103, N 7 P. 931–943.
[10] Balasubramanyam M., Rema M., Premanand C. Biochemical and molecular mechanisms of diabetic retinopathy Curr. Sci 2002 83, N 12 P. 1506–1514.
[11] Flier J. S. Insulin receptors and insulin resistance Ann. Rev. Med 1983 34 P. 145–160.
[12] Moller D. E., Flier J. S. Insulin resistance – mechanisms, syndromes, and implications N. Engl. J. Med 1991 325, N 13 P. 938–946.
[13] Nosadini R., Del Prato S., Tiengo A., Valerio A., Muggeo M., Opocher G., Mantero F., Duner E., Marescotti C., Mollo F., Belloni F. Insulin resistance in Cushing's syndrome J. Clin. Endocrinol. Metab 1983 57, N 3 P. 529–536.
[14] Moller D. E., O'Rahilly S. Syndromes of severe insulin resistance: clinical and pathophysiological features Insulin resistance. Eds D. Moller New York: John Wiley & Sons, 1993 P. 49–71.
[15] Yamasaki H., Yamaguchi Y., Fujita N., Kato C., Kuwahara H., Yamauchi M. D., Yamakawa K., Abe T., Ozaki M., Sera Y., Uotani S., Kawasaki E., Takino H., Eguchi K. Anti-insulin receptor autoantibodies in a patient with type B insulin resistance and fasting hypoglycemia Acta Diabetol 2000 37, N 4 P. 189–196.
[16] Wilcox G. Insulin and insulin resistance Clin. Biochem. Rev 2005 26, N 2 P. 19–39.
[17] Mayer C. M., Belsham D. D. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation Endocrinology 2010 151, N 1 P. 75–84.
[18] Ahmed Z., Smith B. J., Pillay T. S. The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor FEBS Lett 2000 475, N 1 P. 31–34.
[19] Knutson V. P., Donnelly P. V., Balba Y., Lopez-Reyes M. Insulin resistance is mediated by a proteolytic fragment of the insulin receptor J. Biol. Chem 1995 270, N 42 P. 24972–24981.
[20] Shepherd P. R., Withers D. J., Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling Biochem. J 1998 333, pt 3 P. 471–490.
[21] Ueki K., Fruman D. F., Brachmann S. M., Tseng Y. H., Cantley L. C., Kahn C. R. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival Mol. Cell Biol 2002 22, N 3 P. 965– 977.
[22] Chagpar R. B., Links P. H., Pastor M. C., Furber L. A., Hawrysh A. D., Chamberlain M. D., Anderson D. H. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase Proc. Natl Acad. Sci. USA 2010 107, N 12 P. 5471– 5476.
[23] Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin Diabetes 2006 55, N 8 P. 2392–2397.
[24] Bouzakri K., Roques M., Gual P., Espinosa S., Guebre-Egziabher F., Riou J. P., Laville M., Le Marchand-Brustel Y., Tanti J. F., Vidal H. Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes Diabetes 2003 52, N 6 P. 1319– 1325.
[25] Goldfine I. D., Maddux B. A., Youngren J. F., Reaven G., Accili D., Trischitta V., Vigneri R., Frittitta L. The role of membrane glycoprotein plasma cell antigen 1/ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities Endocr. Rev 2008 29, N 1 P. 62–75.
[26] Boura-Halfon S., Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance Am. J. Physiol. Endocrinol. Metab 2009 296, N 4 P. 581–591.
[27] Werner E. D., Lee J., Hansen L., Yuan M., Shoelson S. E. Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302 J. Biol. Chem 2004 279, N 34 P. 35298– 35305.
[28] Aguirre V., Werner E. D., Giraud J., Lee Y. H., Shoelson S. E., White M. F. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action J. Biol. Chem 2002 277, N 2 P. 1531–1537.
[29] Pederson T. M., Kramer D. L., Rondinone C. M. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation Diabetes 2001 50, N 1 P. 24–31.
[30] Savage D. B., Petersen K. F., Shulman G. I. Mechanisms of insulin resistance in humans and possible links with inflammation Hypertension 2005 45, N 5 P. 828–833.
[31] Olefsky J. M., Glass C. K. Macrophages, inflammation, and insulin resistance Annu. Rev. Physiol 2010 72 P. 219–46.
[32] Zeyda M., Stulnig T. Obesity, inflammation, and insulin resistance – a mini-review Gerontology 2009 55, N 4 P. 379–386.
[33] Hiratani K., Haruta T., Tani A., Kawahara J., Usui I., Kobayashi M. Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1 Biochem. Biophys. Res. Commun 2005 335, N 3 P. 836–842.
[34] Aguirre V., Uchida T., Yenush L., Davis R., White M. F. The cJun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307) J. Biol. Chem 2000 275, N 1 P. 9047– 9054.
[35] Hirosumi J., Tuncman G., Chang L., Gorgun C. Z., Uysal K. T., Maeda K., Karin M., Hotamisligil G. S. A central role for JNK in obesity and insulin resistance Nature 2002 420, N 6913 P. 333–336.
[36] Ramasamy R., Vannucci S. J., Yan S. S., Herold K., Yan S. F., Schmidt A. M. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation Glycobiology 2005 15, N 7 P. 16–28.
[37] Bashan N., Kovsan J., Kachko I., Ovadia H., Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species Physiol. Rev 2009 89, N 1 P. 27–71.
[38] Hess D. T., Matsumoto A., Kim S. O., Marshall H. E., Stamler J. S. Protein S-nitrosylation: purview and parameters Nat. Rev. Mol. Cell. Biol 2005 6, N 2 P. 150–166.
[39] Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration Biochem. Biophys. Res. Commun 2003 305, N 3 P. 776–783.
[40] el-Remessy A. B., Bartoli M., Platt D. H., Fulton D., Caldwell R. B. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration J. Cell. Sci 2005 118, pt 1 P. 243–252.
[41] Evans J. L., Goldfine I. D., Maddux B. A., Grodsky G. M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes Endocr. Rev 2002 23 P. 599–622.
[42] Eriksson J. W. Metabolic stress in insulin's target cells leads to ROS accumulation – a hypothetical common pathway causing insulin resistance FEBS Lett 2007 581, N 19 P. 3734– 3742.
[43] Maassen J. A., Hart L. M., Van Essen E., Heine R. J., Nijpels G., Jahangir Tafrechi R. S., Raap A. K., Janssen G. M., Lemkes H. H. Mitochondrial diabetes: molecular mechanisms and clinical presentation Diabetes 2004 53, suppl. 1 P. 103–109.
[44] Petersen K. F., Shulman G. I. New insights into the pathogenesis of insulin resistance in humans using magnetic resonance spectroscopy Obesity 2006 14, suppl. 1 P. 34–40.
[45] Le Marchand-Brustel Y., Gual P., Gremeaux T., Gonzalez T., Barres R., Tanti J. F. Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling Biochem. Soc. Trans 2003 31, pt 6 P. 1152–1156.
[46] Savage D. B., Petersen K. F., Shulman G. I. Disordered lipid metabolism and the pathogenesis of insulin resistance Physiol. Rev 2007 87, N 2 P. 507–520.
[47] Koya D., King G. L. Protein kinase C activation and the development of diabetic complications Diabetes 1998 47, N 6 P. 859–866.
[48] Lam T. K., Yoshii H., Haber C. A., Bogdanovic E., Lam L., Fantus I. G., Giacca A. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta Am. J. Physiol. Endocrinol. Metab 2002 283, N 4 P.682–691.
[49] Goldstein B. J., Ahmad F., Ding W., Li P. M., Zhang W. R. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases Mol. Cell Biochem 1998 182, N 1–2 P. 91–99.
[50] Lazar D. F. Saltiel A. R. Lipid phosphatases as drug discovery targets for type 2 diabetes Nat. Rev. Drug. Discov 2006 5, N 4 P. 333–342.
[51] Randle P. J., Garland P. B., Hales C. N., Newsholme E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus// Lancet 1963 1, N 7285 P. 785–789.
[52] Garcia Soriano F., Virag L., Jagtap P., Szabo E., Mabley J. G., Liaudet L., Marton A., Hoyt D. G., Murthy K. G., Salzman A. L., Southan G. J., Szabo C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation Nat. Med 2001 7, N 1 P. 108–113.
[53] Wells L., Hart G. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar FEBS Lett 2003 546, N 1 P. 154–158.
[54] Du X. L., Edelstein D., Rossetti L., Fantus I. G., Goldberg H., Ziyadeh F., Wu J., Brownlee M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation Proc. Natl Acad. Sci. USA 2000 97, N 22 P. 12222–12226.
[55] Kaneto H., Nakatani Y., Matsuhisa M. ER stress and the JNK pathway in insulin resistance Gene Ther. Mol. Biol 2004 8 P. 515-522.
[56] James L. R., Tang D., Ingram A., Ly H., Thai K., Cai L., Scholey J. W. Flux through the hexosamine pathway is a determinant of nuclear factor kappaB-dependent promoter activation Diabetes 2002 51, N 4 P. 1146–1156.
[57] Peppa M., Uribarri J., Vlassara H. Glucose, advanced glycation end products, and diabetes complications: What is new and what works Clin. Diabetes 2003 21, N 4 P. 186–187.