Biopolym. Cell. 2011; 27(2):107-117.
Структура та функції біополімерів
Тіазолідинони як лейтмотив у створенні протиракових лікарських засобів. Досвід наукової групи з медичної хімії ЛНМУ імені Данила Галицького
1Лесик Р. Б., 1Зіменковський Б. С., 1Камінський Д. В., 1Крищишин А. П., 1Гаврилюк Д. Я., 1Атаманюк Д. В., 1Субтельна І. Ю., 1Хилюк Д. В.
  1. Львівський національний медичний університет імені Данила Галицького
    вул. Пекарська, 69, Львів, Україна, 79010

Abstract

Метою роботи був аналіз результатів дослідження протипухлинної активності 4-азолідонів і споріднених гетероциклічних сполук та формування деяких напрямків раціонального дизайну потенційних протипухлинних агентів. Синтетичні дослідження, проведені у ЛНМУ імені Данила Галицького, дозволили запропонувати низку нових спрямувань молекулярного дизайну біологічно активних 4-тіазолідинонів та споріднених гетероциклічних систем, а також одержати сфокусовану бібліотеку, яка нараховує понад 5000 нових сполук. На цей час здійснено in vitro скринінг протипухлинної активності понад 1000 сполук (US NCI протокол Developmental Therapeutic Program), з-поміж яких 167 ідентифіковано як такі, що мають високу протиракову активність. Для оптимізації і раціонального дизайну високоактивних молекул з оптимальними «лікоподібними» характеристиками та визначення можливого механізму біологічної дії проведено SAR- і QSAR-аналіз і молекулярний докінг. Кінцевою метою проекту є створення інноваційного синтетичного лікарського препарату з оригінальним механізмом дії та достатнім фармакологічним і токсикологічним профілем.
Keywords: синтез, 4-тіа(іміда)золідинони, тіопірано[2, 3-d]тіазоли, протипухлинна активність, (Q)SAR

References

[1] Lesyk R. B., Zimenkovsky B. S. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry Curr. Org. Chem 2004 8, N 16 P. 1547–1577.
[2] Prabhakar Y. S., Solomon V. R., Gupta M. K., Katti S. B. QSAR studies on thiazolidines: a biologically privileged scaffold Top. Heterocycl. Chem 2006 4 P. 161–249.
[3] Tomasic T., Masic L. P. Rhodanine as a privileged scaffold in drug discovery Curr. Med. Chem 2009 16, N 13 P. 1596–1629.
[4] Reginato M. J., Bailey S. T., Krakow S. L., Minami C., Ishii S., Tanaka H., Lazar M. A. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gammaactivating properties J. Biol. Chem 1998 273, N 49 P. 32679–32684.
[5] Kador P. F., Kinoshita J. H., Sharpless N. E. Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications J. Med. Chem 1985 28, N 7 P. 841–849.
[6] Charlier C., Mishaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs Eur. J. Med. Chem 2003 38, N 7–8 P. 645–659.
[7] The Merck Index / Eds M. J. O'Neil et al.: 13th ed New Jersey, 2001 1818 p.
[8] Sim M. M., Ng S. B., Buss A. D., Crasta S. C., Goh K. L., Lee S. K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase Bioorg. Med. Chem. Lett 2002 12, N 4 P. 697–699.
[9] Theocharisa S., Margeli A., Kouraklis G. Peroxisome proliferator activated receptor-gamma ligands as potent antineoplastic agents Curr. Med. Chem. Anticancer Agents 2003 3, N 3 P. 239–251.
[10] Murphy G. J., Holder J. C. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer Trends Pharmacol. Sci 2000 21, N 12 P. 469–474.
[11] Degterev A., Lugovskoy A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL Nat. Cell Biol 2001 3, N 2 P. 173–182.
[12] Carter P. H., Scherle P. A., Muckelbauer J. K., Voss M. E., Liu R.-Q., Thompson L. A., Tebben A. J., Solomon K. A., Lo Y. C., Li Z., Strzemienski P., Yang G., Falahatpisheh N., Xu M., Wu Z., Farrow N. A., Ramnarayan K., Wang J., Rideout D., Yalamoori V., Domaille P., Underwood D. J., Trzaskos J. M., Friedman S. M., Newton R. C., Decicco C. P. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha Proc. Natl Acad. Sci. USA 2001 98, N 21 P. 11879–11884.
[13] Zheng W., Degterev A., Hsu E., Yuan J., Yuan C. Structure-activity relationship study of a novel necroptosis inhibitor, necrostatin-7 Bioorg. Med. Chem. Lett 2008 18, N 18 P. 4932– 4935.
[14] Dayam R., Aiello F., Deng J., Wu Y., Garofalo A., Chen X., Neamati N. Discovery of small molecule integrin v3 antagonists as novel anticancer agents / J. Med. Chem 2006 49, N 15 P. 4526–4534.
[15] Cutshall N. S., O'Day C., Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1 Bioorg. Med. Chem. Lett 2005 15, N 14 P. 3374–3379.
[16] Xia Z., Knaak C., Ma J., Beharry Z. M., McInnes C., Wang W., Kraft A. S., Smith C. D. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases J. Med. Chem 2009 52, N 1 P. 74–86.
[17] Ottana R., Maccari R., Barreca M. L., Bruno G., Rotondo A., Rossi A., Chiricosta G., Di Paola R., Sautebin L., Cuzzocrea S., Vigorita M. G. 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents Bioorg. Med. Chem 2005 13, N 13 P. 4243–4252.
[18] Lesyk R., Zimenkovsky B., Kaminskyy D., Holota S., Atamanyuk D., Havryluk D., Nektegayev I., Kazmirchuk G., Subtel'na I., Roman O., Kryshchyshyn A., Khyluk D. Anticancer potential of 4-azolidones and related heterocycles Annal. UMCS. Sectio DDD 2006 19, N 1 P. 107–110.
[19] Lesyk R., Vladzimirska O., Zimenkovsky B., Horishny V., Nektegayev I., Solyanyk V., Vovk O. New thiazolidones-4 with pyrazolone-5 substituent as the potential NSAIDs Bol. Chim. Farm 1998 137, N 6 P. 210–217.
[20] Lesyk R. B., Artemenko A. G., Zimenkovsky B. S., Kuz'min V. E., Nektegayev I. O., Roman O. M., Atamanyuk D. V. Pharmacological screening and 2D-QSAR analysis of anti-inflammatory activity of 4-thiazolidone derivatives Farmacevtychnyj Zhur 2003 N 3 P. 58–61.
[21] Lesyk R., Zimenkovsky B., Subtelna I., Nektegayev I., Kazmirchuk G. Synthesis and antinflammatory activity of some 2-arylamino-2-thiazoline-4-ones Acta Pol. Pharm 2003 60, N 6 P. 457–466.
[22] Lesyk R., Zimenkovsky B., Kutsyk R. V., Atamanyuk D. V., Semenciv G. M. Synthesis and studing of antimicrobial activity of azolidine derivatives with 2-(2-chlorobenzyloxy)-5-nitrophenyl fragment in molecules Farmacevtychnyj Zhur 2003 N 2 P. 52–56.
[23] Zimenkovskii B. S., Kutsyk R. V., Lesyk R. B., Matyichuk V. S., Obushak N. D., Klyufinska T. I. Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides Pharm. Chem. J 2006 40, N 6 P. 303–306.
[24] Nektegayev I., Lesyk R. 3-Oxyarylthiazolidones-4 and their choleretic activity Sci. Pharm 1999 67 P. 227–230.
[25] Lukyanchuk V. D., Zimenkovsky B. S., Lesyk R. B., Nemyatykh O. D., Nektegayev I. O. Antioxidant activity of 5-arylidene-2,4thazolidinedione-3-alkanoic acid derivatives J. Pharm. Pharmacol 2002 54, Suppl S. 1.
[26] Boyd M. R., Paull K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen Drug Dev. Res 1995 34, N 2 P. 91–109.
[27] Alley M. C., Scudiero D. A., Monks A., Hursey M. L., Czerwinski M. J., Fine D. L., Abbott B. J., Mayo J. G., Shoemaker R. H., Boyd M. R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay Cancer Res 1988 48, N 3 P. 589–601.
[28] Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., GrayGoodrich M., Campbell H., Mayo J., Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines J. Natl Cancer. Inst 1991 83, N 11 P. 757–766.
[29] Boyd M. R. Anticancer drug development guide: preclinical screening, clinical trials, and approval Cancer drug discovery and development / Ed. A. Teicher New Jersey: Humana press, 1997 Ch. 2 P. 23–43.
[30] Shoemaker R. H. The NCI60 human tumour cell line anticancer drug screen Nat. Rev. Cancer 2006 6, N 10 P. 813–823.
[31] Lesyk R., Zimenkovsky B., Atamanyuk D., Jensen F., Kiec-Kononowicz K., Gzella A. Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies Bioorg. Med. Chem 2006 14, N 15 P. 5230–5240.
[32] Lesyk R., Vladzimirska O., Holota S., Zaprutko L., Gzella A. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: synthesis and anticancer evaluation Eur. J. Med. Chem 2007 42, N 5 P. 641–648.
[33] Atamanyuk D., Zimenkovsky B., Lesyk R. Synthesis and anticancer activity of novel thiopyrano[2,3-d]thiazole-based compounds containing norbornane moiety J. Sulf. Chem 2008 29, N 2 P. 151–162.
[34] Matiychuk V. S., Lesyk R. B., Obushak M. D., Gzella A., Atamanyuk D. V., Ostapiuk Y. V., Kryshchyshyn A. P. A new dominoKnoevenagel-hetero-Diels-Alder reaction Tetrahedron Lett 2008 49, N 31 P. 4648–4651.
[35] Havrylyuk D., Zimenkovsky B., Vasylenko O., Zaprutko L., Gzella A., Lesyk R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity Eur. J. Med. Chem 2009 44, N 4:1396– 1404.
[36] Kaminskyy D., Zimenkovsky B., Lesyk R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives Eur. J. Med. Chem 2009 44, N 9:3627–3636.
[37] Mosula L., Zimenkovsky B., Havrylyuk D., Missir A.-V., Chirita I. C., Lesyk R. Synthesis and antitumor activity of novel 2-thioxo-4-thiazolidinones with benzothiazole moieties Farmacia 2009 57, N 3:321–330.
[38] Havrylyuk D., Zimenkovsky B., Lesyk R. Synthesis and anticancer activity of novel nonfused bicyclic thiazolidinone derivatives Phosphorus, Sulfur, and Silicon and the Related Elements 2009 184, N 3: 638–650.
[39] Subtel'na I., Atamanyuk D., Szymanska E., Kiec-Kononowicz K., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity Bioorg. Med. Chem 2010 18, N 14 : 5090–5102.
[40] Havrylyuk D., Mosula L., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis and anticancer activity evaluation of 4thiazolidinones containing benzothiazole moiety Eur. J. Med. Chem 2010 45, N 11: 5012–5021.
[41] Solomon V. R., Hu C., Lee H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity Bioorg. Med. Chem 2009 17, N 21:7585– 7592.
[42] Kaminskyy D. V., Lesyk R. B. Structure-anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives Biopolym. Cell 2010 26, N 2 P. 136–145.
[43] Kaminskyy D. V., Lesyk R. B. Synthesis and biological activity of 4-thiazolidinone-3-acetic acids derivatives Farmacevtychnyj Zhur 2008 N 3 P. 70–78.
[44] Kaminskyy D. V., Roman O. M., Atamanyuk D. V., Lesyk R. B. 5-Ylidene-2-thioxo-4-thiazolidinone-3-succinic acids and their derivatives: synthesis, anticancer activity, QSAR-analysis J. Org. Pharm. Chem 2006 4, N 1 (13) P. 41–48.
[45] Kryshchyshyn A. P., Zimenkovsky B. S., Zaprutko L., Lesyk R. B. Synthesis and antitumor activity evaluation of 3,5a,6,11b-tetrahydro-2H,5H-chromeno[4',3':4,5]thiopyrano[2,3-d]thiazole derivatives J. Org. Pharm. Chem 2010 8, N 1 (29) P. 37–43.
[46] Kryshchyshyn A., Zimenkovsky B., Lesyk R. Synthesis and anticancer activity in vitro of isothiochromeno[3,4-d]thiazole derivatives Annal. UMCS. Sectio DDD 2008 21, N 1 P. 247–251.
[47] Zaharevitz D. W., Holbeck S. L., Bowerman C., Svetlik P. A. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition J. Mol. Graph. Model 2002 20, N 4 P. 297–303.
[48] Paull K. D., Shoemaker R. H., Hodes L., Monks A., Scudiero D. A., Rubinstein L., Plowman J., Boyd M. R. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm J. Natl Cancer Inst 1989 81, N 14 P. 1088–1092.
[49] Brier S., Lemaire D., Debonis S., Forest E., Kozielski F. Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5 Biochemistry 2004 43, N 41 P. 13072–13082.