Biopolym. Cell. 2010; 26(2):105-114.
Огляди
Пошук функцій гангліозидів; що нового ми дізналися з «evo-devo», або сигналінг довготривалого збереження
1Хеффер-Лаук М., 2Можсович-Чуік А., 3Храбак П., 1Вільжетич Б., 4Дикич Д.
  1. Школа медицини,
    Осієцький університет імені Йосипа Юрая Штросмаєра
    вул. Гутлерова, 4, Осієк, Хорватія, 3100
  2. Університет прикладних медичних досліджень
    вул. Млінарская 38, Загреб, Хорватія, 10000
  3. Хорватський інститут неврології, Загребський університет
    вул. Салата 11, Загреб, Хорватія, 10000
  4. Факультет природничих наук, Університет Загреба
    6, Русвелтов пл., Загреб, Хорватія, 10000

Abstract

Гангліозиди – характеристичні детермінанти, які локалізовані на зовнішній поверхні мембран клітин мозку хребетних. Чотири основних гангліозиди (GM1, GD1a, GD1b i GT1b) переважають серед сотень інших сполук гліколіпідів нервової тканини. У процесі розвитку мозку експресія простих гангліозидів зміщується у бік синтезу більш складних сполук, що супроводжується багаторазовим зростанням їхньої загальної кількості. Зміщення експресії – строго регульований процес, за якого поява деяких специфічних структур репрезентує добре відомі стадії розвитку нервової тканини. З точки зору еволюції вміст гангліозидів у мозку риб та амфібій значно нижчий, ніж у мозку ссавців, проте загальна їхня варіабельність суттєво вища. Більш полярні сполуки, які широко представлені у антарктичних риб, є рідкісними для ссавців або характерними для певного короткотривалого етапу онтогенезу. Плазуни, птахи і ссавці зберігають ідентичні спільні структури, що мають подібні патерни експресії з незначними міжвидовими відмінностями. Навпаки, для мозку риб та амфібій відзначено істотну міжвидову відмінність щодо кількості, структури та патерну експресії. Першочерговим припущенням еволюційного дослідження стало те, що варіації у вмісті ліпідів, зокрема гліколіпідів, під час температурної адаптації у холоднокровних і гетеротермних тварин, які впадають у сплячку, є високоефективним молекулярним механізмом захисту функціонування мембран. Вивчення впорядкованих доменів ліпідів за останнє десятиліття підтверджує гангліозид-опосередковану регуляцію мембранних білків (рецептори з кіназною активністю, рецептори нейротрансмітерів та іонні канали), так само як і взаємодію рецептор–ліганд, важливу для передачі позаклітинного сигналу.
Keywords: гангліозиди, головний мозок, еволюція, розвиток, клітинна сигналізація, lipid rafts

References

[1] Woods A. S., Jackson S. N. Brain tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry AAPS. J 2006 8, N 2 P. E391–395.
[2] Tettamanti G. Ganglioside/glycosphingolipid turnover: new concepts Glycoconj. J 2004 20, N 5 P. 301–317.
[3] Schnaar R. Neural function of glycolipids Comprehensive glycoscience. Ed. J. P. Kamerling Amsterdam: Elsevier, 2007 P. 323–337.
[4] Yu R. K., Ariga T. Glycosphingolipid structures Comprehensive glycoscience. Ed. J. P. Kamerling Amsterdam: Elsevier, 2007 P. 73–122.
[5] Tettamanti G., Bonali F., Marchesini S.Zambotti V. A new procedure for the extraction, purification and fractionation of brain gangliosides Biochim. Biophys. Acta 1973 296, N 1 P. 160–170.
[6] Maccioni H. J. Glycosylation of glycolipids in the Golgi complex J. Neurochem 2007 103, Suppl 1 P. 81–90.
[7] Maxzud M. K., Daniotti J. L., Maccioni H. J. Functional coupling of glycosyl transfer steps for synthesis of gangliosides in Golgi membranes from neural retina cells J. Biol. Chem 1995 270, N 34 P. 20207–20214.
[8] Bieberich E., MacKinnon S., Silva J., Li D. D., Tencomnao T., Irwin L., Kapitonov D., Yu R. K. Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases Biochemistry 2002 41, N 38 P. 11479– 11487.
[9] Yu R. K., Bieberich E., Xia T., Zeng G. Regulation of ganglioside biosynthesis in the nervous system J. Lipid. Res 2004 45, N 5 P. 783–793.
[10] Kabayama K., Sato T., Saito K., Loberto N., Prinetti A., Sonnino S., Kinjo M., Igarashi Y., Inokuchi J. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance Proc. Nat. Acad. Sci. USA 2007 104, N 34 P. 13678–13683.
[11] Fantini J., Barrantes F. J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function Biochim. Biophys. Acta 2009 1788, N 11 P. 2345–2361.
[12] Anderson R. G., Jacobson K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains Science 2002 296, N 5574 P. 1821–1825.
[13] Lopez P. H., Schnaar R. L. Gangliosides in cell recognition and membrane protein regulation Curr. Opin. Struct. Biol 2009 9, N 5 P. 549–557.
[14] Yiamouyiannis J. A., Dain J. A. The appearance of ganglioside during embryological development of the frog J. Neurochem 1968 15, N 7 P. 673–676.
[15] Hunter G. D., Wiegant V. M., Dunn A. J. Interspecies comparison of brain ganglioside patterns studied by two-dimensional thin-layer chromatography J. Neurochem 1981 37, N 4 P. 1025–1031.
[16] Ishizuka I., Kloppenburg M., Wiegandt H. Characterization of gangliosides from fish brain Biochim. Biophys. Acta 1970 210, N 2 P. 299–305.
[17] Rahmann H., Hilbig R., Probst W., Muhleisen M. Involvement of temperature in the composition of fish brain gangliosides J. Therm. Biol 1983 8, N 1–2 P. 107–109.
[18] Kappel T., Hilbig R., Rahmann H. Variability in brain ganglioside content and composition of endothermic mammals, heterothermic hibernators and ectothermic fishes Neurochem. Int 1993 22, N 6 P. 555–566.
[19] Hilbig R., Rahmann H. Variability in brain gangliosides of fishes J. Neurochem 1980 34, N 1 P. 236–240.
[20] Avrova N. F. Gangliosides in fish brain Adv. Exp. Med. Biol 1980 125 P. 177–183.
[21] Rahmann H., Jonas U., Kappel T., Hilderbrandt H. Differential involvement of gangliosides versus phospholipids in the process of temperature adaptation in vertebrates. A comparative phenomenological and physicochemical study Ann. N. Y. Acad. Sci 1998 845 P. 72–91.
[22] Freischutz B., Saito M., Rahmann H., Yu R. K. Activities of five different sialyltransferases in fish and rat brains J. Neurochem 1994 62, N 5 P. 1965–1973.
[23] Irwin L. N., Schwartz K. Amphibian brain gangliosides: pattern analysis by two-dimensional thin-layer chromatography Comp. Biochem. Physiol. B 1983 76, N 3 P. 649–651.
[24] Irwin L. N., Irwin C. C. Phylogenetic and regional variations in brain gangliosides of tetrapods Comp. Biochem. Physiol. B 1979 64, N 1 P. 121–123.
[25] Becker K., Wohrmann A. P. A., Rahmann. Brain gangliosides and cold-adaptation in high-Antartic fish Biochem. System. Ecol 1995 23, N 7–8 P. 695–707.
[26] Ledeen R. W., Yu R. K. Gangliosides of the nervous system Ganglioside function. Eds G. C. B. Porcellati, B. Ceccarelli, G. Tettamanti New York; London: Plenum press, 1976 P. 191–204.
[27] Becker K., Rahmann H. Influence of ambient temperature on content and composition of brain gangliosides in vertebrates Comp. Biochem. Physiol. B. Biochem. Mol. Biol 1995 111, N 2 P. 299–310.
[28] Viljetic B., Degmecic I. V., Krajina V., Bogdanovic T., Mojsovic A., Dikic D., Vajn K., Schnaar R. L., Heffer-Lauc M. Distribution of major brain gangliosides in olfactory tract of frogs. Coll Antropol. 2011;35 Suppl 1:121-6.
[29] Avrova N. F. Brain ganglioside patterns of vertebrates J. Neurochem 1971 18, N 4 P. 667–674.
[30] Tagawa Y., Laroy W., Nimrichter L., Fromholt S. E., Moser A. B., Moser H. W., Schnaar R. L. Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids Neurochem. Res 2002 27, N 7–8 P. 847–855.
[31] Avrova N. F., Ghidoni R., Karpova O. B., Nalivayeva N. N., Malesci A., Tettamanti G. Systematic position of fish species and ganglioside composition and content Comp. Biochem. Physiol. B 1986 83, N 3 P. 669–676.
[32] Simons K., van Meer G. Lipid sorting in epithelial cells Biochemistry 1988 27, N 17 P. 6197–6202.
[33] Rajendran L., Simons K. Lipid rafts and membrane dynamics J. Cell. Sci 2005 118, N 6 P. 1099–1102.
[34] Mitsuda T., Furukawa K., Fukumoto S., Miyazaki H., Urano T., Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals J. Biol. Chem 2002 277, N 13 P. 11239–11246.
[35] Rahmann H., Hilbig R., Marx J., Beitinger H., Mehlfeld R. Brain gangliosides and hibernation. J. Therm. Biol. 1987; 12, N 2 P. 81–85.
[36] Hilbig R., Rahmann H., Rosner H. Brain gangliosides and temperature adaptation in euryand stenothermic teleost fish (carp and raibow trout) J. Therm. Biol 1979 4, N 1 P. 29–34.
[37] Zehmer J. K., Hazel J. R. Plasma membrane rafts of rainbow tro ut are subject to thermal acclimation J. Exp. Biol 2003 206, N 10 P. 1657–1667.
[38] Zehmer J. K., Hazel J. R. Membrane order conservation in raft and non-raft regions of hepatocyte plasma membranes from thermally acclimated rainbow trout Biochim. Biophys. Acta 2004 1664, N 1 P. 108–116.
[39] Luque M. E., Crespo P. M., Monaco M. E., Aybar M. J., Daniotti J. L., Sanchez S. S. Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis Develop. Dyn 2008 237, N 1 P. 112–123.
[40] Chisada S., Yoshimura Y., Sakaguchi K., Uemura S., Go S., Ikeda K., Uchima H., Matsunaga N., Ogura K., Tai T., Okino N., Taguchi R., Inokuchi J., Ito M. Zebrafish and mouse alpha 2,3-sialyltransferases responsible for synthesizing GM4 ganglioside J. Biol. Chem 2009 284, N 44 P. 30534– 30546.
[41] Chang L. Y., Mir A. M., Thisse C., Guerardel Y., Delannoy P., Thisse B., Harduin-Lepers A. Molecular cloning and characterization of the expression pattern of the zebrafish alpha2, 8sialyltransferases (ST8Sia) in the developing nervous system Glycoconj. J 2009 26, N 3 P. 263–275.
[42] Vanier M. T., Holm M., Ohman R., Svennerholm L. Developmental profiles of gangliosides in human and rat brain J. Neurochem 1971 18, N 4 P. 581–592.
[43] Merat A., Dickerson J. W. The effect of development on the gangliosides of rat and pig brain J. Neurochem 1973 20, N 3 P. 873–880.
[44] Irwin L. N., Michael D. B., Irwin C. C. Ganglioside patterns of fetal rat and mouse brain J. Neurochem 1980 34, N 6 P. 1527–1530.
[45] Hilbig R. R. H., Rosner H., Mertz G., Segler-Stahl K., Rahmann H. Developmental profiles of gangliosides in mouse and rat cerebral cortex Rouxs Arch. Develop. Biol 1982 191, N 4 P. 281–284.
[46] Yu R. K., Macala L. J., Taki T., Weinfield H. M., Yu F. S. Developmental changes in ganglioside composition and synthesis in embryonic rat brain J. Neurochem 1988 50, N 6 P. 1825–1829.
[47] Kracun I., Rosner H., Cosovic C., Stavljenic A. Topographical atlas of the gangliosides of the adult human brain J. Neurochem 1984 43, N 4 P. 979–989.
[48] Svennerholm L., Bostrom K., Jungbjer B., Olsson L. Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years J. Neurochem 1994 63, N 5 P. 1802–1811.
[49] Kracun I., Rosner, H., Kostovic I., Rahmann H. Areal and laminar distribution of gangliosides in the fetal human neopallium at 28 weeks of gestation Rouxs. Arch. Develop. Biol 1983 192, N 2 P. 108–112.
[50] Seyfried T. N., Miyazawa N., Yu R. K. Cellular localization of gangliosides in the developing mouse cerebellum: analysis using the weaver mutant J. Neurochem 1983 41, N 2 P. 491–505.
[51] Seyfried T. N., Bernard D. J., Yu R. K. Cellular distribution of gangliosides in the developing mouse cerebellum: analysis using the staggerer mutant J. Neurochem 1984 43, N 4 P. 1152–1162.
[52] Rosner H. A new thin-layer chromatographic approach for separation of multisialogangliosides. Novel gangliosides fractions in the embryonic chicken brain Anal. Biochem 1980 109, N 2 P. 437–442.
[53] Miller-Podraza H., Mansson J. E.Svennerholm L. Isolation of complex gangliosides from human brain Biochim. Biophys. Acta 1992 1124, N 1 P. 45–51.
[54] Molin K., Mansson J. E., Fredman P., Svennerholm L. Sialosyllactotetraosylceramide, 3'-isoLM1, a ganglioside of the lactotetraose series isolated from normal human infant brain J. Neurochem 1987 49, N 1 P. 216–219.
[55] Mendez-Otero R., Ramon-Cueto A. Expression of 9-O-acetylated gangliosides during development of the rat olfactory system Neuroreport 1994 5, N 14 P. 1755–1759.
[56] Rosner H., Greis C., Henke-Fahle S. Developmental expression in embryonic rat and chicken brain of a polysialogan glioside-antigen reacting with the monoclonal antibody Q 211 Brain Res 1988 470, N 2 P. 161–171.
[57] Greis C., Rosner H. Migration and aggregation of embryonic chicken neurons in vitro: possible functional implication of polysialogangliosides Brain Res. Develop. Brain. Res 1990 57, N 2 P. 223–234.
[58] Letinic K., Heffer-Lauc M., Rosner H., Kostovic I. C-pathway polysialogangliosides are transiently expressed in the human cerebrum during fetal development Neuroscience 1998 86, N 1 P. 1–5.
[59] Molliver M. E., Kostovic I., van der Loos H. The development of synapses in cerebral cortex of the human fetus Brain Res 1973 50, N 2 P. 403–407.
[60] Kotani M., Ozawa H., Kawashima I., Ando S., Tai T. Generation of one set of monoclonal antibodies specific for a-pathway ganglio-series gangliosides Biochim. Biophys. Acta 1992 1117, N 1 P. 97–103.
[61] Ferretti P., Borroni E. Putative cholinergic-specific gangliosides in guinea pig forebrain J. Neurochem 1986 46, N 6 P. 1888–1894.
[62] Kotani M., Kawashima I., Ozawa H., Ogura K., Ishizuka I., Terashima T., Tai T. Immunohistochemical localization of minor gangliosides in the rat central nervous system Glycobiology 1994 4, N 6 P. 855–865.
[63] Kotani M., Kawashima I., Ozawa H., Terashima T., Tai T. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies Glycobiology 1993 3, N 2 P. 137–146.
[64] Irie F., Hashikawa T., Tai T., Seyama Y., Hirabayashi Y. Distribution of cholinergic neuron-specific gangliosides (GT1a alpha and GQ1b alpha) in the rat central nervous system Brain Res 1994 665, N 1 P. 161–166.
[65] Kotani M., Terashima T., Tai T. Developmental changes of ganglioside expressions in postnatal rat cerebellar cortex Brain Res 1995 700, N 1–2 P. 40–58.
[66] Schlosshauer B., Blum A. S., Mendez-Otero R., Barnstable C. J., Constantine-Paton M. Developmental regulation of ganglioside antigens recognized by the JONES antibody J. Neurosci 1988 8, N 2 P. 580–592.
[67] Saito M., Kitamura H., Sugiyama K. The specificity of monoclonal antibody A2B5 to c-series gangliosides J. Neurochem 2001 78, N 1 P. 64–74.
[68] Schwarz A., Futerman A. H. The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies Biochim. Biophys. Acta 1996 1286, N 3 P. 247–267.
[69] Schwarz A., Futerman A. H. Determination of the localization of gangliosides using anti-ganglioside antibodies: comparison of fixation methods J. Histochem. Cytochem 1997 45, N 4 P. 611–618.
[70] Kawashima I., Tai T. An immunocytochemical technique with monoclonal antibodies to glycosphingolipids in rat primary cerebellar cultures: influence of detergent permeabilization Brain Res. Brain Res. Protoc 1998 2, N 4 P. 299–305.
[71] Heffer-Lauc M., Viljetic B., Vajn K., Schnaar R., L.Lauc G. Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections J. Histochem. Cytochem 2007 55, N 8 P. 805–812.
[72] Heffer-Lauc M., Lauc G., Nimrichter L., Fromholt S. E., Schnaar R. L. Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation Biochim. Biophys. Acta 2005 1686, N 3 P. 200–208.
[73] Schnaar R. L., Fromholt S. E., Gong Y., Vyas A. A., Laroy W., Wayman D. M., Heffer-Lauc M., Ito H., Ishida H., Kiso M., Griffin J. W., Shiekh K. A. Immunoglobulin G-class mouse monoclonal antibodies to major brain gangliosides Anal. Biochem 2002 302, N 2 P. 276–284.
[74] Lopez P. H., Zhang G., Bianchet M. A., Schnaar R. L., Sheikh K. A. Structural requirements of anti-GD1a antibodies determine their target specificity Brain 2008 131, N 7 P. 1926–1939.
[75] Sugiura Y., Shimma S., Konishi Y., Yamada M. K., Setou M. Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus PLoS. One 2008 3, N 9 P. e3232.
[76] Schwarz A., Rapaport E., Hirschberg K.Futerman A. H. A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching J. Biol. Chem 1995 270, N 18 P. 10990–10998.
[77] Hirschberg K., Zisling R., van Echten-Deckert G., Futerman A. H. Ganglioside synthesis during the development of neuronal polarity. Major changes occur during axonogenesis and axon elongation, but not during dendrite growth or synaptogenesis J. Biol. Chem 1996 271, N 25 P. 14876–14882.
[78] Yang L. J., Zeller C. B., Shaper N. L., Kiso M., Hasegawa A., Shapiro R. E., Schnaar R. L. Gangliosides are neuronal ligands for myelin-associated glycoprotein Proc. Nat. Acad. Sci. USA 1996 93, N 2 P. 814–818.
[79] Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett. 2010;584(9):1741-7.
[80] Takamiya K., Yamamoto A., Furukawa K., Yamashiro S., Shin M., Okada M., Fukumoto S., Haraguchi M., Takeda N., Fujimura K., Sakae M., Kishikawa M., Shiku H., Furukawa K., Aizawa S. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system Proc. Nat. Acad. Sci. USA 1996 93, N 20 P. 10662–10667.
[81] Sheikh K. A., Sun J., Liu Y., Kawai H., Crawford T. O., Proia R. L., Griffin J. W., Schnaar R. L. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects Proc. Natl. Acad. Sci. USA 1999 96, N 13 P. 7532–7537.
[82] Sun J., Shaper N. L., Itonori S., Heffer-Lauc M., Sheikh K. A., Schnaar R. L. Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides Glycobiology 2004 14, N 9 P. 851–857.
[83] Yamashita T., Wada R., Sasaki T., Deng C., Bierfreund U., Sandhoff K., Proia R. L. A vital role for glycosphingolipid synthesis during development and differentiation Proc. Nat. Acad. Sci. USA 1999 96, N 16 P. 9142–9147.
[84] Yamashita T., Allende M. L., Kalkofen D. N., Werth N., Sandhoff K., Proia R. L. Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis Genesis 2005 43, N 4 P. 175–180.
[85] Jennemann R., Sandhoff R., Wang S., Kiss E., Gretz N., Zuliani C., Martin-Villalba A., Jager R., Schorle H., Kenzelmann M., Bonrouhi M., Wiegandt H., Grone H. J. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth Proc. Nat. Acad. Sci. USA 2005 102, N 35 P. 12459–12464.
[86] Kawai H., Allende M. L., Wada R., Kono M., Sango K., Deng C., Miyakawa T., Crawley J. N., Werth N., Bierfreund U., Sandhoff K., Proia R. L. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures J. Biol. Chem 2001 276, N 10 P. 6885–6888.
[87] Prinetti A., Loberto N., Chigorno V., Sonnino S. Glycosphingolipid behaviour in complex membranes Biochim. Biophys. Acta 2009 1788, N 1 P. 184–193.
[88] Allende M. L., Proia R. L. Lubricating cell signaling pathways with gangliosides Curr. Opin. Struct. Biol 2002 12, N 5 P. 587–592.