Biopolym. Cell. 2010; 26(1):5-12.
Огляди
Бiлковий сплайсинг та його еволюцiя в еукарiотних органiзмiв
1Старокадомський П. Л.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Інтеїни, або білкові інтрони, – це білкові послідовності, якi автокаталітично вирізаються після трансляції, зшиваючи фланкуючі ділянки (екстеїни). Такий процес названо білковим сплайсингом. Спочатку інтеїни виявлено у прокаріотів і одноклітинних еукаріотів. Але загальний принцип посттрансляційної перестановки білків еволюціонував разом із живою матерією. На сьогодні ціла низка білків у багатоклітинних організмів модифікується за механізмами, принципово схожими з білковим сплайсингом у бактерій. Ці процеси отримали назву білкового редагування. Найцікавішим випадком білкового редагування є «тасування» епітопів антигенів протеасомою, що відіграє важливу роль у процесі презентації антигену клітинами. Іншими прикладами слугують дозрівання Hg-білків (рецепторів, критичних для коректного протікання ембріогенезу) або дозрівання низки метаболічних ферментів. Незважаючи на брак експериментальних даних, в огляді зроблено спробу описати найяскравіші приклади еволюції у вищих еукаріотів.
Keywords: бiлковий сплайсинг, білкове редагування, протеасома, еволюція

References

[1] Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69 kDA subunit of the vacuolar H+-adenosine triphosphatase Science 1990 250, N 4981 P. 651– 657.
[2] Anraku Y., Mizutani R., Satow Y. Protein splicing: Its discovery and structural insight into novel chemical mechanisms IUBMB Life 2005 57, N 8 P. 563–574
[3] Perler F., Davis E., Dean G., Gimble F., Jack W., Neff N., Noren C., Thorner J., Belfort M. Protein splicing elements: Inteins and exteins, a definition of terms, and recommended nomenclature Nucl. Acids Res 1994 22, N 7 P. 1125– 1127.
[4] Perler F. InBase, the intein database Nucl. Acids Res 2002 30, N 1 P. 383–384.
[5] Noren C., Wang J., Perler F. Dissecting the chemistry of protein splicing and its applications Angew. Chem. Int. Ed 2000 39, N 3 P. 450–466.
[6] Perler F. Protein splicing mechanisms and applications IUMBM Life 2005 57, N 7 P. 469–476.
[7] Yang J., Meng Q., Liu X. Intein harbouring large tandem repeats in replicative DNA helicase of Trichodesmium erythraeum Mol. Microbiol 2004 51, N 4 P. 1185–1192.
[8] Starokadomskyy P. L. Protein splicing Mol. Biol. (Moscow) 2007 41, N 2, P. 278–293.
[9] Starokadomskii P. L. Protein splicing. Ukr Biokhim Zh. 2005 77, N 4 P. 14–29.
[10] Evans T., Xu M. Mechanistic and kinetic considerations of protein splicing Chem. Rev 2002 102, N 12 P. 4869– 4883.
[11] Pietrokovski S. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins Protein Sci 1994 3, N 12 P. 2340–2350.
[12] Perler F., Olsen G., Adam E. Compilation and analysis of intein sequences Nucl. Acids Res 1997 25, N 6 P. 1087– 1093.
[13] Pietrokovski S. Modular organization of inteins and C-terminal autocatalytic domains Protein Sci 1998 7, N 1 P. 64– 71.
[14] Choi J. J., Nam K. H., Min B., Kim S. J., Soll D., Kwon S. T. Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans J. Mol. Biol 2006 356, N 5 P. 1093–1106.
[15] Pietrokovski S. Intein spread and extinction in evolution. Trends Genet 2001 17, N 8 P. 465–472.
[16] Hanada K., Yewdel J. W., Yang J. C. Immune recognition of a human renal cancer antigen through post-translational protein splicing Nature 2004 427, N 6971 P. 252–256.
[17] Hanada K., Yang J. C. Novel biochemistry: post-translational protein splicing and other lessons from the school of antigen processing J. Mol. Med 2005 83, N 6 P. 420–428.
[18] Rammensee HG. Immunology: protein surgery. Nature. 2004; 427(6971)203–204.
[19] Saska I., Craik D. Protease-catalysed protein splicing: a new post-translational modification? Trends Biochem. Sci 2008 33, N 8 P. 363–368.
[20] Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms FEBS Lett 1991 294, N 1–2 P. 89–93.
[21] Sun P., Ye S., Ferrandon S., Evans T. C., Xu M. Q., Rao Z. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing J. Mol. Biol 2005 353, N 5 P. 1093–1105.
[22] Bjornsdottir S. H., Blondal T., Hreggvidsson G. O., Eggertsson G., Petursdottir S., Hjorleifsdottir S., Thorbjarnardottir S. H., Kristjansson J. K. Rhodothermus marinus: Physiology and molecular biology Extremophiles 2006 10, N 1 P. 1–16.
[23] Khan M. S., Khalid A. M., Malik K. A. Intein-mediated protein trans-splicing and transgene containment in plastids Trends Biotech 2005 23, N 1 P. 217–220.
[24] Gogarten J., Senejani A., Zhaxybayeva O., Olendzenski L., Hilario E. Inteins: Structure, function, and evolution Annu. Rev. Microbiol 2002 56 P. 263–287.
[25] Hertveldt K., Lavigne R., Pleteneva E., Sernova N., Kurochkina L., Korchevskii R., Robben J., Mesyanzhinov V., Krylov V. N., Volckaert G. Genome comparison of Pseudomonas aeruginosa large phages J. Mol. Biol 2005 354, N 3 P. 536–545.
[26] Nagasaki K., Shirai Y., Tomaru Y., Nishida K., Pietrokovski S. Algal viruses with distinct intraspecies host specificities include identical intein elements Appl. Environ. Microbiol 2005 71, N 17 P. 3599–3607.
[27] Suhre K., Audic S., Claverie J. M. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes Proc. Nat. Acad. Sci. USA. 2005 102, N 41 P. 14689– 14693.
[28] Carrington D. M., Auffret A., Hanke D. E. Polypeptide ligation occurs during post-translational modification of concanavalin A Nature 1985 313, N 5997 P. 64–67.
[29] Zaretsky J., Wreschner D. Protein multifunctionality: Principles and mechanisms Translat. Oncogenom 2008 3 P. 99–136.
[30] Min W., Jones D. H. In vitro splicing of concanavalin A is catalyzed by asparaginyl endopeptidase Nat. Struct. Biol 1994 1, N 8 P. 502–504.
[31] Paulus H. Protein splicing and related forms of protein autoprocessing Annu. Rev. Biochem 2000 69 P. 447– 496.
[32] Ingham P. W., McMahon A. P. Hedgehog signaling in animal development: Paradigms and principles Genes Develop 2001 15, N 23 P. 3059–3087.
[33] Amitai G., Belenkiy O., Dassa B., Shainskaya A., Pietrokovski S. Distribution and function of new bacterial intein-like protein domains Mol. Microbiol 2003 47, N 1 P. 61–73.
[34] Albert A., Dhanaraj V., Genschel U., Khan G., Ramjee M. K., Pulido R., Sibanda B. L., von Delft F., Witty M., Blundell T. L., Smith A. G., Abell C. Crystal structure of aspartate decarboxylase at 2.2 C resolution provides evidence for an ester in protein self-processing Nat. Struct. Biol 1998 5, N 4 P. 289–293.
[35] Klabunde T., Sharma S., Telenti A., Jacobs W. R., Sacchettini J. C. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing Nat. Struct. Biol 1998 5, N 1 P. 31–36.
[36] Wu H., Hu Z., Liu X. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803 Proc. Nat. Acad. Sci. USA 1998 95, N 16 P. 9226–9231.