Biopolym. Cell. 2006; 22(4):307-316.
Геном та його регуляція
Екзогенні ДНК можуть впливати на регуляторні системи рослин, відповідальні за адаптацію до змін у довкіллі
1Кацан В. А., 1Потопальський А. І.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Розроблено оригінальну технологію отримання рослин тютюну з комплексом селекційно цінних ознак (прискорений розвиток, висока продуктивність та стійкість до комплексного засолення грунтів) за допомогою препаратів екзогенної ДНК (е-ДНК), вивчено фізіолого-біохімічні особли­вості таких рослин та їхнє спадкування. Для індукування бажаних змін у жовтолистого сорту тютюну Крупнолистный 20 (КР20) використано ДНК солестійкої форми пасльону чорного Solanum nigrum L. і плазмід pCAMVNEO та рТі8628. Важлива її перевага — забезпечення ширшого спектра змін і більшого виходу змінених життєздатних рослин. На основі аналізу модифікацій, виявлених у тютюну та рослин модельної системи, використаних при розробці технології, запропоновано гіпотетичний механізм впливу е-ДНК на спадковість рослин.
Keywords: пасльонові, екзогенні ДНК, алкілована тіофосфамідом ДНК, хлорофіли, каротин, ксантофіли, віолаксантин, лютеїн, солестійкість

References

[1] Flowers TJ. Improving crop salt tolerance. J Exp Bot. 2004;55(396):307–19.
[2] Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW, Tanji KK, Panday S. Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc Natl Acad Sci U S A. 2005;102(43):15352-6.
[3] Potopalsky AI, Katsan VA, Yurkevich LN, Kovalev VA. [Tomato varieties Ukrainian salt-tolerant and promising lines derived from them]. Ovo­shchevodstvo i bakhchevodstvo. 2005;51:168—80.
[4] Tarnavskiy ND. The role of nucleic acid conjugation of chromosomes. Dokl Akad Nauk SSSR. 1938;20(9):721—24.
[5] Tarnavskiy MD. On the role of nucleic acids in the evocation directed mutations. Dopovidi Akad Nauk UkrRSR. 1939; (1):47—9.
[6] Gershenson SM. Induction of directed mutations in Drosophpla mekmogaster. Dokl Akad Nauk SSSR. 1939; 25(2):224-7.
[7] Gershenson SM, Alexandrov YuN, Malyuta SS. Mutagenic Effect of DNA and viruses in Drosophila. Kiev: Naukova Dumka, 1975; 160 p.
[8] Gershenzon SM. [The selectivity of the mutagenic action of DNA and other polynucleotides]. Zh Obshch Biol. 1996;57(6):661-83.
[9] KAtsan VA, Potopalskiy AI, Yurkevich LN. Obtaining plants of economically valuable signs using exogenous DNA. Materials Intern. Forum "Fundamentals of molecular genetic improvement of the person and the environment" (31 May—1 June 2005). Kyiv, 2005:84-7.
[10] Sivolap YuM, Obraztsov SI. The possibility of genetic transformation in higher plants. Molekulyarnaia Biologiia (Kiev). 1980; Iss 26:3—8.
[11] Kartel NA. Effects of exogenous DNA in higher plants. Minsk: Nauka i tekhnika, 1981; 143 p.
[12] Larchenko EA, Morgun VV. Experimental variability of maize. Kiev: Naukova Dumak, 1993; 173 p.
[13] Kosmodemyanskiy VN, Ruban EV, Ivanova TZ. Dominant mutations White, induced by N-nitrosourea in tobacco. Practice chemical mutagenesis. M.: Nauka, 1971:179-83.
[14] Buchynskyy AF. Features yellow leaf forms of Nicotiana tabacum L. Coll. works on breeding, genetics and Seed tobacco and shag. (VNIITiM). Krasnodar, 1936; Iss. 132:37—54.
[15] Ivanova TZ. Tobaccos color and quality. Tobacco. 1967; 4:53-4.
[16] Shmuk AA. Chemistry and technology of tobacco. M.: Pischepromizdat, 1953. vol 3; 776 p.
[17] Baranova EG. Genetic inheritance features of chemical composition of tobacco varieties and their use in selection: Auth Thesis. ... kand biol nauk. NII zemledeliya AN Armenii. Echmiadzin, 1990; 25 p.
[18] AS USSR N 1170871 T, MKI C 12 N 15/00, C 07 H 21/00. A method for obtaining a deoxyribonucleic acid from plant material. ZYu Tkachuk, AI Potopalskiy. Publ 10.04.1985.
[19] Voloshchuk TP, Patskovskiy YuV, Potopal'skii AI. Alkylation of nucleic acid components with ethylenimine and its derivatives. IV. Alkylation of homopolynucleotides and DNA. Bioorg Khim. 1999;25(6):464-73.
[20] Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab, 1982; 545 p.
[21] Kokunin VA. Statistical processing with small number of expreriments. Ukr Biokhim Zh. 1975; 47(6):776—91.
[22] Plokhinskiy NA. Biometry. Moscow, Mosk. Univ. Press, 1970; 367 p.
[23] Potopalsky AI, Katsan VA, Lesjkiv ME. Effect of native and modificated e-DNA on biosynthesis of photosynthetic pigments in Nicotiana tabacum L. 1. Content of chlorophylls and carotenoides in the plants of the first generation. Biopolym Cell. 1995; 11(2):88-99.
[24] Katsan VA, Potopalsky AI. Effect of exogenic native and modified DNAs on biosynthesis of photosynthetic pigments in Nicotiana tabacum L. 2. The dynamics of chlorophylls and carotenoids content in the plants of the second and third generations. Biopolym Cell. 2000; 16(1):22-34.
[25] Katsan VA, Potopalsky AI, Yurkevich LN. The use of exogenous DNA for yellow leaves Nicotiana tabacum L mutant correction Programme . Factors in Experimental Evolution of Organisms. Kyiv. Agrarna Nauka, 2003;339-45.
[26] Potopalsky AI, Katsan VA, Yurkevich LN. Results and prospects of the Solanaceae plants production with the native and modified DNA. Ovo­shchevodstvo i bakhchevodstvo. 2005; 51:181-97.
[27] Ma S, Gong Q, Bohnert UJ. Dissecting salt stress pathways. J Exp Bot. 2006;57(5):1097—1107.
[28] Wu CA, Yang GD, Meng QW, Zheng CC. The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. Plant Cell Physiol. 2004;45(5):600-7.
[29] Kishor P, Hong Z, Miao GH, Hu C, Verma D. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol. 1995;108(4):1387-94.
[30] Holmstr?m KO, Somersalo S, Mandal A, Palva TE, Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot. 2000;51(343):177-85.
[31] Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 2003;131(2):516-24. PubMed
[32] Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett. 2006;580(16):3980-8.
[33] Wi SJ, Kim WT, Park KY. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep. 2006;25(10):1111-21.
[34] Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A. 2003;100(25):14672-7.
[35] Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A. 2005;102(2):509-14.
[36] Yen HE, Edwards GE, Grimes HD. Characterization of a salt-responsive 24-kilodalton glycoprotein in Mesembryanthemum crystallinum. Plant Physiol. 1994;105(4):1179-87.
[37] Yamasato A, Nagata N, Tanaka R, Tanaka A. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis. Plant Cell. 2005;17(5):1585-97.
[38] Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell. 1996;8(9):1627-39.
[39] Gonz?lez-Guzm?n M, Abia D, Salinas J, Serrano R, Rodr?guez PL. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiol. 2004;135(1):325-33.
[40] Espino E, Xiomara R, Garsia V, Garsia YH, Habana PR. Nueva variaded de tabaco negro (Nicotiana tabacum) con resistancia multiple y buenas caracteristicas comerciales. Agrotech Cuba. 1989; 21(2):9-13.
[41] Energy aspects of plant resistance. Ed IA Tarchevskiy. Kazan: Publ Kazan Univ, 1986; 140 p.
[42] Khesin RB. Genome instability. Moscow, Nauka, 1984; 472 p.
[43] Katsan VA, Potopalsky AI, Les'kiv ME. Kanamycin resistance of tobacco plants influenced by the preparations of DNAs on seeds. Biopolym Cell. 1996; 12(2):47-55.
[44] Jordan ET, Hatfield PM, Hondred D, Talon M, Zeevaart JA, Vierstra RD. Phytochrome A overexpression in transgenic tobacco. Correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol. 1995;107(3):797-805.
[45] Peng J, Harberd NP. Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiol. 1997;113(4):1051-8.
[46] Genoud T, Buchala AJ, Chua NH, M?traux JP. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J. 2002;31(1):87-95.
[47] Zeier J, Pink B, Mueller MJ, Berger S. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta. 2004;219(4):673-83.
[48] Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005;42(4):567-85.
[49] Gibson SI. Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot. 2004;55(395):253-64.
[50] Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell. 2003;15(9):1962-80.
[51] McClintock B. The significance of responses of the genome to challenge. Science. 1984;226(4676):792-801.
[52] Georgiev PG. The role of mobile genetic elements in the mutagenesis induced by chemical and physical agents: Auth Thesis. ... kand biol nauk . Inst Mol Biol im NG. Engelgardts. Moscow, 1991. 23 p.
[53] Ratner VA. Block-modular principle of organization and evolution of molecular-genetic regulatory systems (MGRS). Genetika. 1992;28(2):5-24.
[54] Ratner VA, Vasil'eva LA. [The role of mobile genetic elements (MGE) in microevolution]. Genetika. 1992;28(12):5-17.
[55] Ratner VA, Vasil'eva LA. Critical limitation on thee genomic System of mobile genetic elements. Genetika. 1994; 30(5):593-9.
[56] Gvozdev VA, Kaidanov LZ. System changes the localization of transposable elements in the genome of Drosophila melanogaster, accompanying the process of selection. Molecular mechanisms of genetic processes. M.: Nauka, 1990:26-36.
[57] Beliaeva ES, Pasiukova EG, Gvozdev VA. ["Adaptive transposition" of retrotransposons in the Drosophila melanogaster genome accompanying the increase in features of adaptability]. Genetika. 1994;30(6):725-30.
[58] Gershenson SM. Mutagenic action of DNA and the problem of directed mutations. Genetika. 1966; 5(5):3–15.
[59] Gershenson SM. Mutagenic effects of DNA insertion, transposition and unstable genes. Genetics and human well-being: Proc. XV Int. Genet Congr. M.: Nauka, 1981:304-18.
[60] Gershenson SM, Alexandrov YuN. Mutagenic effect of natural and synthetic polynucleotides and problem of directed mutations. Zh Obshch Biol. 1982; 43(6):747-63
[61] Vavilov NI. The law of variability of homologous series. Leningrad: Nauka, 1987; 260 p.