Biopolym. Cell. 2004; 20(1-2):7-16.
Біосенсори на основі іоноселективних польових транзисторів: теорія, технологія, практика
1Дзядевич С. В.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Розглядаються основні теоретичні принципи, які лежать в основі роботи іоноселективних польових транзисторів та їхнє застосування в біоаналітичній практиці. Наведено деякі особ­ливості найрозвиненіших мікротехнологій для їхнього виго­товлення і схеми вимірів з необхідним апаратним забезпечен­ням. Детально описано досягнення в галузі розробки фермен­тних біосенсорів на основі іоноселективних польових транзи­сторів та оцінено перспективи їхнього використання.

References

[1] Thevenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification (Technical report). Pure Appl. Chem, 1999; 71(12):2333-2348.
[2] Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng, BME-17 1970;(1):70-71.
[3] Bergveld P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans Biomed Eng. 1972; BME-19 (5):342-351.
[4] Matsuo T., Wise K.D. An Integrated Field-Effect Electrode for Biopotential Recording. IEEE Trans Biomed Eng. 1974 BME-21 (6):485-487.
[5] Bergveld P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B Chem. 2003;88 (1):1-20.
[6] Petersen, Kurt E. Silicon as a mechanical material. Proceedings of the IEEE, 1982; 70 (5):420-457.
[7] Middelhoek S. Celebration of the tenth transducers conference: The past, present and future of transducer research and development. Sens Actuators A Phys. 2000; 82 (1), pp. 2-23.
[8] Shul'ga AA, Strikha VI.Current state development of biosensors based on semiconductor structures. Biotech - a new trend of computerization / Ed. GR Ivanitskiy. Moscow, Nauka, 1990; 63-82.
[9] Covington AK, Sibbald A. Ion-sensitive field effect transistors. Philos Trans R Soc Lond B Biol Sci. 1987 316(1176):31-46.
[10] Janata J, Bezegh A. Chemical sensors. Anal Chem. 1988;60(12):62R-74R.
[11] Janata J., Huber R. Ion-selective field effect transistors. Ion-Selective Electrode Rev, 1979; 1:31-79.
[12] Solid State Chemical Sensors Eds. J. Janata, R. Huber. New York: Acad, Press, 1985; 211 p.
[13] Ko WH. Solid-state physical transducers for biomedical research. IEEE Trans Biomed Eng. 1986;33(2):153-62.
[14] Takahashi K., Matsuo T. Integration of multi-microelectrode and interface circuits by silicon planar and three-dimensional fabrication technology. Sensors and Actuators, 1984;5 (1):89-99.
[15] Wohltjen H. Chemical microsensors and microinstrumentation. Analytical Chemistry, 1984; 56 (1):87A-103A.
[16] Cane C., Gracia I., Merlos A. Microtechnologies for pH ISFET chemical sensors. Microelectronics Journal. 1997; 28 (4 SPEC. ISS.):389-405.
[17] Tsukada K., Sebata M., Miyahara Y., Miyagi H. Long-life multiple-ISFETS with polymeric gates. Sensors and Actuators. 1989; 18 (3-4):329-336.
[18] Bousse Luc, De Rooij Nico F., Bergveld P. Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Transactions on Electron Devices, 1983; ED-30 (10):1263-1270.
[19] Abe Hiroshi, Esashi Masayoshi, Matsuo Tadayuki ISFET'S USING INORGANIC GATE THIN FILMS. IEEE Transactions on Electron Devices. 1979; ED-26 (12):1939-1944.
[20] Gimmel P., Gompf B., Schmeisser D., Wiemh?fer H.D., G?pel W., Klein, M. Ta2O5-gates of pH-sensitive devices: Comparative spectroscopic and electrical studies. Sensors and Actuators, 1989; 17 (1-2):195-202.
[21] Akiyama T., Ujihira Y., Okabe Y. Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing. IEEE Transactions on Electron Devices, 1982 29 (12):1936-1941.
[22] Matsuo T., Esashi M. Methods of isfet fabrication. Sensors and Actuators, 1 1981; (C):77-96.
[23] Bowman L., Meindl J.D. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng. 1986; 33 (2):248-255.
[24] Shul'ga A.A., Netchiporouk L.I., Sandrovsky A.K., Abalov A.A., Frolov O.S., Kononenko Yu.G., Maupas H., et al. Operation of an ISFET with non-insulated substrate directly exposed to the solution. Sens Actuators B Chem. 1996; 30 (2):101-105.
[25] Sant W., Pourctel M.L., Launay J., Do Canto T., Martinez A., Temple-Boyer P. Development of chemical field effect transistors for medical analysis. The 16 Eur. Conf. On Solid-State Transducers Prague, 2002; 619-620.
[26] Dzyadevych S.V., Mai Anh T., Soldatkin A.P., Due Chien N., Jaffrezic-Renault N., Cfiovelon J.-M. Development of enzyme biosensor based on pl-I-sensitive field-effect transistors for detection of phenolic compounds () Book of XVI Int. Symp. On Bioelectrochem. and Bioenergetics. Bratislava, 2001; p. 124.
[27] Mai Anh T. Master Thesis, 1TIMS Hanoi Univ. of Technol. Hanoi 1999
[28] Wong Hon-Sum, White Marvin H. CMOS-integrated 'ISFET-operational amplifier' chemical sensor employing differential sensing. IEEE Transactions on Electron Devices. 1989; 36 (3):479-487.
[29] Bausells, J., Carrabina, J., Errachid, A., Merlos, A. Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens Actuators B Chem. 1999; 57 (1-3):56-62.
[30] Bergveld P. The operation of an ISFET as an electronic device. Sensors and Actuators, 1981; 1 (C):17-29.
[31] Janata J, Moss SD. Chemically sensitive field-effect transistors. Biomed Eng. 1976;11(7):241-5.
[32] Caras S., Janata J. Field effect transistor sensitive to penicillin. Analytical Chemistry, 1980;52 (12):1935-1937.
[33] Miyahara Y., Matsu F., Moriizumi T., Matsuoka H., Karube I., Suzuki S. Micro enzyme sensors using semiconductor and enzyme-immobilization techniques. Proc. Int. Meet, On Chem. Sensors (Fukuoka, Japan, September 19-22, 1983). Anal. Chem. (Symp. Ser.). 1983; 17:501-506.
[34] Hanazato Y., Shiono S. Bioelectrode using two hydrogen ion sensitive field effect transistors and a platinum wire pseudo reference electrode. Proc. Int. Meet, On Chem. Sensors (Fukuoka, Japan, September 19-22, 1983). Anal. Chem. (Symp. Ser.). 1983; 17:513-518.
[35] Caras SD, Janata J, Saupe D, Schmitt K. pH-based enzyme potentiometric sensors. Part 1. Theory. Anal Chem. 1985;57(9):1917-20.
[36] Caras SD, Petelenz D, Janata J. pH-based enzyme potentiometric sensors. Part 2. Glucose-sensitive field effect transistor. Anal Chem. 1985;57(9):1920-3.
[37] Caras SD, Janata J. pH-based enzyme potentiometric sensors. Part 3. Penicillin-sensitive field effect transistor. Anal Chem. 1985;57(9):1924-5.
[38] Eddowes M.J. Response of an enzyme-modified pH-sensitive ion selective device; consideration of the influence of the buffering capacity of the analyte solution. Sensors and Actuators, 1985; 7 (2):97-115.
[39] Eddowes M.J., Pedley D.G., Webb B.C. Enzyme-modified ISFETs: Theoretical and practical consideration. Anal. Proc, 1986; 23:152-156.
[40] Eddowes M.J. Response of an enzyme-modified pH-sensitive ion-selective device; analytical solution for the response in the presence of pH buffer.Sensors and Actuators, 1987; 11 (3):265-274.
[41] Miyahara Y., Moriizumi T., Ichimura K. Integrated enzyme fets for simultaneous detections of urea and glucose () Sensors and Actuators, 1985; 7 (1): 1-10.
[42] Soldatkin AP, Sandrovskiy AK, Shul'ga AA, Starodub HF, Strikha VI, Yel'skaya AV. Glucose biosensor based on pH-sensitive field-effect transistors. The dependence of the biosensor response on the composition of the sample solution. Zh. analit. khimii. 1990; 45:1405-09.
[43] Soldatkin A.P., El'skaya A.V., Shul'ga A.A., Netchiporouk L.I., Nyamsi Hendji A.M., Jaffrezic-Renault N., Martelet C. Glucose-sensitive field-effect transistor with additional Nafion membrane. Reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Analytica Chimica Acta, 1993; 283 (2):695-701.
[44] Dzyadevich SV, Korpan YI, Arkhipova VN, Alesina MYu, Martelet C, El'Skaya AV, Soldatkin AP. Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum. Biosens Bioelectron. 1999;14(3):283-7.
[45] Anzai J., Okhi Y., Osa T., Nakajima H., Matsuo, T. Urea sensor based on an ion sensitive field effect transistor. II. Effect of buffer concentration and pH on the potentiometric response. Chem. Pharm. Bull, 1985; 33, pp. 2556-2559.
[46] Karube J., Tamiya E., Dicks J.M., Gotoh M. A micro-sensor for urea based on an ion-selective effeel transistor. Anal. Chim. Acta, 1986; 185:1950-2200.
[47] Soldatkin AP, Bubryak OA, Starodub HF, Yel'skaya AV, Sandrovskiy AK, Shul'ga AA, Strikha VI. Urease FET biosensor. Design features and performance in model conditions. Elektrokhimiya. 1993. 29:315-9.
[48] de Melo JV, Soldatkin AP, Martelet C, Jaffrezic-Renault N, Cosnier S. Use of competitive inhibition for driving sensitivity and dynamic range of urea ENFETs. Biosens Bioelectron. 2003;18(4):345-51.
[49] Arkhipova VN, Dziadevich SV, Soldatkin AP, El'skaia AV. Enzyme biosensors for penicillin determination based on conductometric planar electrodes and pH-sensitive field effect transistor. Ukr Biokhim Zh. 1996;68(1):26-31.
[50] Gorchkov D.V., Soldatkin A.P., Maupas H., Martelet C., Jaffrezic-Renault N. Correlation between the electrical charge properties of polymeric membranes and the characteristics of ion field effect transistors or penicillinase based enzymatic field effect transistors () Analytica Chimica Acta, 1996; 331 (3):217-223.
[51] Hendji A.M.N., Jaffrezic-Renault N., Martelet C., Clechet P., Shlu'ga A.A., Strikha V.I., Netchiporuk L.I., et al. Sensitive detection of pesticides using a differential ISFET-based system with immobilized cholinesterases () Analytica Chimica Acta, 1993; 281 (1):3-11.
[52] Arkhypova VN, Dzyadevych SV, Soldatkin AP, El'skaya AV, Jaffrezic-Renault N, Jaffrezic H, Martelet C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta. 2001;55(5):919-27.
[53] Kubo I., Karube I. Immobilization of creatinine deiminase on a substituted poly(methylglutamate) membrane and its use in a creatinine sensor. Analytica Chimica Acta, 1986; 187 (C):31-37.
[54] Soldatkin AP, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N. Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane. Talanta. 2002;58(2):351-7.
[55] Soldatkin A.P., Montoriol J., Sant W., Martelet C., Jaffrezic-Renault N. Development of potentiometric creatinine-sensitive biosensor based on ISFET and creatinine deiminase immobilised in PVA/SbQ photopolymeric membrane.Materials Science and Engineering C, 2002; 21 (1-2):75-79.
[56] Anh TM, Dzyadevych SV, Soldatkin AP, Duc Chien N, Jaffrezic-Renault N, Chovelon JM. Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions. Talanta. 2002;56(4):627-34.
[57] Dzyadevych SV, Mai Anh T, Soldatkin AP, Duc Chien N, Jaffrezic-Renault N, Chovelon JM. Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds. Bioelectrochemistry. 2002;55(1-2):79-81.
[58] Korpan Y.I., Soldatkin A.P., Gonchar M.V., Sibirny A.A., Gibson T.D., El'skaya A.V. A novel enzyme biosensor specific for formaldehyde based on pH-sensitive field effect transistors. Journal of Chemical Technology and Biotechnology, 1997; 68 (2):209-213.
[59] Korpan Y.I., Dzyadevich S.V., Arkhipova V.N., El'skaya A.V., Gonchar M.V., Gibson T.D., Jaffrezic-Renault N., et al. Enzyme-based electrochemical sensors for formaldehyde detection.Sensors and Materials, 2000; 12 (2):79-87.
[60] Soldatkin A.P., Gorchkov D.V., Martelet C., Jaffrezic-Renault N. New enzyme potentiometric sensor for hypochlorite species detection. Sensors and Actuators, B: Chemical, 1997; 43 (1-3):99-104.
[61] Soldatkin A. P.Biosensors based on cholinesterases for the analysis of pesticides, heavy metal ions and hypochlorite species. Biopolym. Cell. 1998; 14(1):23-28.
[62] Soldatkin A. P. Urease-based biosensor with improved sensitivity for heavy metal ions analysis. Biopolym. Cell. 1997; 13(5):377-379.
[63] Korpan YI, Volotovsky VV, Martelet C, Jaffrezic-Renault N, Nazarenko EA, El'skaya AV, Soldatkin AP. A novel enzyme biosensor for steroidal glycoalkaloids detection based on pH-sensitive field effect transistors. Bioelectrochemistry. 2002;55(1-2):9-11.
[64] Arkhypova VN, Dzyadevych SV, Soldatkin AP, El'skaya AV, Martelet C, Jaffrezic-Renault N. Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosens Bioelectron. 2003;18(8):1047-53.
[65] Kharitonov, A.B., Zayats, M., Alfonta, L., Katz, E., Willner, I. A novel ISFET-based NAD+-dependent enzyme sensor for lactate (2001) Sensors and Actuators, B: Chemical, 76 (1-3), pp. 203-210.
[66] Kawabe T., Jijima J.V., Mitamura, T. ISFET type threonine sensor using threonine deaminase from thermophilic bacterium. Denki Kagaku. M1985, 53, :514-515.
[67] Iida, T., Kawabe, T., Noguchi, F. ISFET-type L-glutamate sensor using thermophilic glutamine synthetase from thermophilic bacterium. Nippon Kagaki Kaishi, 1987; 10:1817-1821.
[68] Beloivan O. A., Soldatkin A. P., Starodub N. F., El'skaya A. V. A proteolytic biosensor based on a pH-sensitive field effect transistor. 1. The comparative investigation of native and immobilized trypsin. Biopolym. Cell. 1996; 12(3):27-33.
[69] Beloivan O. A., Soldatkin A. P., Starodub N. F., El'skaya A. V. A proteolytic biosensor based on a pH-sensititive field effect transistor. II. Investigation of operation in model solutions. Biopolym. Cell. 1996; 12(4):25-30.
[70] Dziadevych SV, Soldatkin OP. A conductometric method of measuring enzymatic catalysis. Ukr Biokhim Zh. 1994;66(4):30-42.
[71] Dzyadevych S. V. Amperometric biosensors. Modern technologies and commercial variants. Biopolym. Cell. 2002; 18(5):363-376.
[72] Hanazato Y., Nakako M., Maeda M., Shiono S. Glucose sensor based on a field-effect transistor with a photolithographically patterned glucose oxidase membrane. Analytica Chimica Acta, 1987; 193:87-96.
[73] Kurojama T., Kimura L., Kawana Y. A single chip biosensors. NEC Res. Devices, 1985; 78, pp. 1-5.
[74] Nakamoto S., Ito N., Kuriyama T., Kimura J. A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors. Sensors and Actuators. 1988; 13 (2):165-172.
[75] Arkhipova V. N., Dzyadevich S. V., Schuvailo O. N., Soldatkin A. P., Elskaya A. V., Jaffrezic-Renault N., Jaffrezic H., Martelet C. Conception of multibiosensor for determination of different toxic substances based on the enzyme inhibitor analysis. Biopolym. Cell. 2001; 17(1):70-77.
[76] Kukla A.L., Kanjuk N.I., Starodub N.F., Shirshov Y.M. Multienzyme electrochemical sensor array for determination of heavy metal ions. Sensors and Actuators, B: Chemical, 1999; 57 (1-3):213-218.
[77] Kanyuk MI, Starodub VM, Kukla OL, Shyrshov YuM. Potentiometric sensors based on semiconductor enzymes. Ukr Biokhim Zh. 2002;74(4B Suppl 2):183-184.