Biopolym. Cell. 1999; 15(6):510-515.
Геном та його регуляція
Стабільна торсійна напруга в ДНК політенних хромосом Chironomus thummi
1Кузін Ф. Е., 1Шилова І. Е., 2Бугреєв Д. В., 2Невінський Г. А., 1Груздев О. Д.
  1. Інститут цитології і генетики СО РАН
    пр. ак. Лаврентьєва, 10, Новосибірськ, Російська Федерація, 630090
  2. Інститут хімичної біології і фундаментальної медицини СО РАН
    пр. ак. Лаврентьєва, 8, Новосибірськ, Російська Федерація, 630090

Abstract

Мікрофлюориметричним методом визначено топологічний стан ДНК в ізольованих політенних хромосомах хірономусу С. thummi, які знаходяться на стадії активної транскрипції. Показано, що 15 % усієї ДНК хромосом, яка доступна інтеркаляції бромистого етидію, знаходиться у торсійна на­пруженому стані. Числове значення виявленої напруги, виражене у відносній різниці скручення напруженої молекули ДПК по відношенню до її релаксованої форми, дорівнює –0,1. Показано також, що домени торсійно напруженої ДИК містять послідовності, що транскрибуються. Торсійно напружена ДНК є недоступною релаксуючій дії ендогенних топоізомераз, але напруга зникає при додаванні екзогенної топоізомерази І.

References

[1] Kramer PR, Sinden RR. Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry. 1997;36(11):3151-8.
[2] McClure WR. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171-204.
[3] Darst SA, Edwards AM, Kubalek EW, Kornberg RD. Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell. 1991;66(1):121-8.
[4] Hirose S, Suzuki Y. In vitro transcription of eukaryotic genes is affected differently by the degree of DNA supercoiling. Proc Natl Acad Sci U S A. 1988;85(3):718-22.
[5] Ljungman M, Hanawalt PC. Localized torsional tension in the DNA of human cells. Proc Natl Acad Sci U S A. 1992;89(13):6055-9.
[6] Jupe ER, Sinden RR, Cartwright IL. Stably maintained microdomain of localized unrestrained supercoiling at a Drosophila heat shock gene locus. EMBO J. 1993;12(3):1067-75.
[7] Jupe ER, Sinden RR, Cartwright IL. Specialized chromatin structure domain boundary elements flanking a Drosophila heat shock gene locus are under torsional strain in vivo. Biochemistry. 1995;34(8):2628-33.
[8] Liu, L.F.T., Wang, J.C. Supereoiling of the D N A template during transcription (1987) Proc. Nat. Acad. Sci. USA, 84, pp. 1353-1358.
[9] Freeman LA, Garrard WT. DNA supercoiling in chromatin structure and gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(2):165-209.
[10] Sinden RR, Carlson JO, Pettijohn DE. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell. 1980;21(3):773-83.
[11] Kiknadze II. Comparative characteristics of puffing pattern in salivary gland chromosomes during larval development and metamorphosis. II. Puffing pattern in chromosomes I, II, III. Tsitologiia. 1978; 20(5):514-21.
[12] Gruzdev AD, Shurdov MA. Topological state of DNA in polytene chromosomes. Biochim Biophys Acta. 1992;1131(1):35-40.
[13] Kiknadze II, Panova TM, Zakharenko LP. The comparative characteristics of puffing pattern in salivary gland chromosomes during larval development and metamorphosis. III. Transcriptional activity of the nucleolus and the Balbiani rings. Tsitologiia. 1981; 23(5):531-8.
[14] Kiknadze I. Kolesnikov NI, Lopatin OE. Chironomus Chironomus thummi Kieff. (laboratory culture). Objects of Developmental Biology. M.: Nauka, 1975, 95-127.
[15] Robert M. Effect of ionic strength and pH on the differential decondensation of nucleoproteins in isolated salivary gland nuclei and chromosomes of Chironomus thummi. Chromosoma. 1971;36(1):1-33.
[16] Bauer WR. Structure and reactions of closed duplex DNA. Annu Rev Biophys Bioeng. 1978;7:287-313.
[17] Bugreev DV, Vasiutina EL, Maksakova GA, Buneva VN, Ando T, Nevinskii GA. Recognition of human DNA topoisomerase I by superhelical DNA: evaluation of the relative contribution of specific and nonspecific interactions. Mol Biol (Mosk). 1997;31(3):418-30.
[18] McGhee JD, von Hippel PH. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974;86(2):469-89.
[19] Vergani L, Gavazzo P, Mascetti G, Nicolini C. Ethidium bromide intercalation and chromatin structure: a spectropolarimetric analysis. Biochemistry. 1994;33(21):6578-85.
[20] McMurray CT, van Holde KE. Binding of ethidium to the nucleosome core particle. 1. Binding and dissociation reactions. Biochemistry. 1991;30(23):5631-43.
[21] Bauer W, Vinograd J. Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J Mol Biol. 1970;47(3):419-35.
[22] Doenecke D. Ethidium bromide (EB) binding to nucleosomal DNA. Effects on DNA cleavage patterns. Exp Cell Res. 1977;109(2):309-15.
[23] Stratling WH, Seidel I. Relaxation of chromatin structure by ethidium bromide binding: determined by viscometry and histone dissociation studies. Biochemistry. 1976;15(22):4803-9.
[24] Hutchison N, Weintraub H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell. 1985;43(2 Pt 1):471-82.
[25] Reaban ME, Griffin JA. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature. 1990;348(6299):342-4.
[26] van Holde K, Zlatanova J. Unusual DNA structures, chromatin and transcription.
[27] Gilmour DS, Pflugfelder G, Wang JC, Lis JT. Topoisomerase I interacts with transcribed regions in Drosophila cells. Cell. 1986;44(3):401-7.
[28] Rose KM, Szopa J, Han FS, Cheng YC, Richter A, Scheer U. Association of DNA topoisomerase I and RNA polymerase I: a possible role for topoisomerase I in ribosomal gene transcription. Chromosoma. 1988;96(6):411-6.
[29] Stewart AF, Herrera RE, Nordheim A. Rapid induction of c-fos transcription reveals quantitative linkage of RNA polymerase II and DNA topoisomerase I enzyme activities. Cell. 1990;60(1):141-9.