Biopolym. Cell. 2011; 27(1):59-65.
Genomics, Transcriptomics and Proteomics
Expression of some water stress-induced genes in the seedlings of Arabidopsis thaliana grown under conditions of moderate water deficit
1Bobrownyzky J. A.
  1. M. G. Kholodny Institute of Botany, NAS of Ukraine
    2, Tereschenkivska Str., Kyiv, Ukraine, 01601

Abstract

Aim. In this study we have analyzed the expression of some water stress-inducible genes of Arabidopsis. Methods. A method of growing the A. thaliana seedlings at slowly lowering water potential on an agar-solidified medium was used. Gene expression was analyzed using a method of real-time PCR. Results. We have detected an increased expression of RD29A and AtP5CS, two ABA-dependent genes. At the same time, their expression did not reach the level observed in the experiments where the conditions of acute water stress were imposed. The levels of expression of AtP5CS correlated with the concentration of proline in the seedlings of A. thaliana. However, there was not detected a significant increase in the expression of DREB2A, RD17 and ERD1, three ABA-independent genes. Conclusions. The pattern of gene expression under conditions close to natural ones may differ from that observed under an acute water stress
Keywords: Arabidopsis thaliana, gene expression, water deficit, real-time PCR, proline

References

[1] Shinozaki K., Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance J. Exp. Bot 2007 58, N 2 P. 221–227.
[2] Bray E. A. Plant responses to water deficit Trends Plant Sci 1997 2, N 2 P. 48–54.
[3] Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. Plant cellular and molecular responses to high salinity Annu. Rev. Plant Physiol. Plant Mol. Biol 2000 51 P. 463–499.
[4] Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants Annu. Rev. Plant Physiol. Plant Mol. Biol 1996 47 P. 377–403.
[5] Thomashow M. F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms Annu. Rev. Plant Physiol. Plant Mol. Biol 1999 50 P. 571–599.
[6] Eisen M. B., Brown P. O. DNA arrays for analysis of gene expression Meth. Enzymol 1999 303 P. 179–205.
[7] Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 1995 270, N 5235 P. 467– 470.
[8] Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Taji T., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y., Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray Plant J 2002 31, N 3 P. 279–292.
[9] Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress Curr. Opin. Biotechnol 1996 7, N 2 P. 161–167.
[10] Shinozaki K., Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response Plant Physiol 1997 115, N 2 P. 327–334.
[11] Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways Curr. Opin. Plant Biol 2000 3, N 3 P. 217–223.
[12] Zhu J. K. Cell signaling under salt, water and cold stresses Curr. Opin. Plant Biol 2001 4, N 5 P. 401–406.
[13] Horak C. E., Snyder M. Global analysis of gene expression in yeast Funct. Integr. Genomics 2002 2, N 4–5 P. 171–180.
[14] Sakuma Y., Liu Q., Dubouzet J. G., Abe H., Shinozaki K., Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/ AP2 domain of Arabidopsis DREBs, transcription factor involved in dehydrationand cold-inducible gene expression Biochem. Biophys. Res. Communs 2002 290, N 3 P. 998–1009.
[15] Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in droughtand low temperature-responsive gene expression, respectively, in Arabidopsis Plant Cell 1998 10, N 8 P. 1391–1406.
[16] Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression Proc. Natl Acad. Sci. USA 2006 103, N 49 P. 18822–18827.
[17] Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor Nat. Biotechnol 1999 17, N 3 P. 287–291.
[18] Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress Plant Cell 1994 6, N 2 P. 251–264.
[19] Yamaguchi-Shinozaki K., Shinozaki K. Organization of cisacting regulatory elements in osmoticand cold-stress-responsive promoters Trends Plant Sci 2005 10 N 2 P. 88–94.
[20] Zhou G.-A., Chang R.-Zh., Qiu L.-J. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis Plant Mol. Biol 2010 72, N 4–5 P. 357–367.
[21] Kishor P. B. K., Hong Z., Miao C. H., Hu Ch.-A.A., Verma D. P. S. Overexpression of -pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants Plant Physiol 1995 108, N 4 P. 1387–1394.
[22] Simpson S. D., Nakashima K., Narusaka Y., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Two different novel cisacting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence Plant J 2003 33, N 2 P. 259–270.
[23] Peltier J.-B., Ytteberg J., Liberles D. A., Roepstorff P., van Wijk K. J. Identification of a 350-kDa CIpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana J. Biol. Chem 2001 276, N 19 P. 16318– 16327.
[24] Bates S. L., Waldren R. P., Teare I. D. Rapid determination of free proline for water-stress studies Plant and Soil 1973 39, N 1 P. 205–207.
[25] Kim J.-M., To T. K., Ishida J., Morosawa T., Kawashima M., Matsui A., Toyoda T., Kimura H., Shinozaki K., Seki M. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana Plant Cell Physiol 2008 49, N 10 P. 1580–1588.
[26] Yoshiba Y., Kiyosue T., Katagiri T., Ueda H., Mizoguchi T., Yamaguchi-Shinozaki K., Wada K., Harada Y., Shinozaki K. Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress Plant J 1995 7, N 5 P. 751–760.
[27] Nakashima K., Shinwari Z. K., Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydrationand high-salinityresponsive gene expression Plant Mol. Biol 2000 42, N 4 P. 657–665.
[28] Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression Plant Cell 2006 18, N 5 P. 1292–1309.