Biopolym. Cell. 1993; 9(6):13-21.
Reviews
Biochemical characteristics of the rat liver transcriptionally active and repressed chromatin
1Levitsky E. L., 1, 2Gubsky Yu. I., 3Chabanny V. N., 2Volkov G. L., 3Novikova S. N.
  1. Institute of Pharmacology and Toxicology of National Medical Academy of Science of Ukraine
    14, Eugene Pottier Str., Kyiv, Ukraine, 03057
  2. Palladin Institute of Biochemistry, NAS of Ukraine
    9, Leontovycha Str., Kyiv, Ukraine, 01601
  3. Gerontology Institute of the Academy of Medical Sciences of Ukraine
    67, Vyshgorodska Str., Kyiv, Ukraine, 04114

Abstract

The intact rat liver trancriptionally active and repressed chromatin fractions have been characterized. The transcriptionally activity differences between the fractions may be conditioned by distinctions in the chromatin protein component, that is increased RNA-polymerases concentration in active chromatin. Differences between in vivo and in vitro DNA synthesis, thermodenaturation process and susceptibility to endo- and exogenous DNA-ases are insignificant and so it may be thought the DNA structure similarity in active and repressed chromatin. Moreover it may be thought that differences between phospholipid and fatty acids fractions compositions may be a cause of the chromatin realization of its genetic activity.

References

[1] StuditskiÄ­ VM, BeliavskiÄ­ AV, Mel'nikova AF, Mirzabekov AD. The structure of nucleosomal core particles located on the transcribed genome regions. Mol Biol (Mosk). 1988;22(3):706-17.
[2] Reeves R. Transcriptionally active chromatin. Biochim Biophys Acta. 1984;782(4):343-93.
[3] Reeves R, Jones A. Genomic transcriptional activity and the structure of chromatin. Nature. 1976;260(5551):495-500.
[4] Chikhirzhina GI, Domkina LK, Chigareva NG, Ashmarin IP. Solubilization of chromatin by an endogenous enzymic Ca2+, Mg2+-dependent factor. Activity of residual chromatin. Mol Biol (Mosk). 1976;10(6):1303-10.
[5] GubskiÄ­ IuI, LevitskiÄ­ EL, ChabannyÄ­ VN, Volkov GL, Gol'dshteÄ­n NB, Litoshenko AIa. Lipid peroxidation and parameters of thermodenaturation of chromatin fractions in the rat liver. Ukr Biokhim Zh. 1990;62(2):76-82.
[6] GubskiÄ­ IuI, LevitskiÄ­ EL, Volkov GL. Fatty acid composition of rat liver chromatin fractions under conditions of stimulation of lipid peroxidation. Ukr Biokhim Zh. 1991;63(1):87-91.
[7] GubskiÄ­ IuI, LevitskiÄ­ EL, Zhila VA, Litoshenko AIa. Molecular mechanisms of damage to fractionated liver chromatin by tetrachloromethane. Vopr Med Khim. 1992;38(3):54-8.
[8] Ashmarin IP, Vasil'yev II, Ambrosov VA. Rapid methods of statistical processing and planning experiments. L. : Izd-vo Leningr. gos univ-ta. 1975; 78 p.
[9] Levitsky EL, Gubskiy JuI. Regulatory effect of calcium ions and cyclic nucleotides on DNA synthesis in mammalian cells. Biokhimiya zhivotnykh i cheloveka. 1990; 14: 33-44.
[10] Zbarsky IB. Organization of the cell nucleus. M.: Meditsina, 1988. 368 p.
[11] Khrapunov SP, Dragan AI, Berdyshev GD. Structure and function of chromatin. Kiev : Vishcha shk., 1987. 167 p.
[12] Bostock CJ, Sumner AT. The Eukaryotic Chromosome. North-Holland Publishing Company, 1978. 525 p.
[13] Kucherenko NE, Tsudzevich BA, Blum YaB. Biochemical model of regulation of the activity of chromatin. Kiev: Naukova Dumka, 1983. 248 p.
[14] Lewin B. Genes. (2nd Edition). New York, John Wiley & Sons, 1985; 734 p.
[15] Elgin SC. Workshop on chromosome structure and gene expression. Meeting Rev. 1990; 2-12.
[16] Elgin SC. Chromatin structure and gene activity. Curr Opin Cell Biol. 1990;2(3):437-45. Review.
[17] Kornberg A. DNA Synthesis, W. H. Freeman and Co., San Francisco, 1974.
[18] Ivanov VI. On the role of metals in desoxyribonucleic acid. Biofizika. 1965;10:11-6.
[19] Whitfield JF, Boynton AL, MacManus JP, Sikorska M, Tsang BK. The regulation of cell proliferation by calcium and cyclic AMP. Mol Cell Biochem. 1979;27(3):155-79.
[20] Sikorska M, de Belle I, Whitfield JF, Walker PR. Regulation of the synthesis of DNA polymerase-alpha in regenerating liver by calcium and 1,25-dihydroxyvitamin D3. Biochem Cell Biol. 1989;67(7):345-51.
[21] Lebkowski JS, Laemmli UK. Evidence for two levels of DNA folding in histone-depleted HeLa interphase nuclei. J Mol Biol. 1982;156(2):309-24.
[22] Lebkowski JS, Laemmli UK. Non-histone proteins and long-range organization of HeLa interphase DNA. J Mol Biol. 1982;156(2):325-44.
[23] Shires TK. Iron-induced DNA damage and synthesis in isolated rat liver nuclei. Biochem J. 1982;205(2):321-9.
[24] Gubsky YuI, Levitsky EL, Goldshtein NB, Litoshenko AYa. Lipid peroxidation of chromatin fractions of the rat liver. Doklady Akad Nauk Ukr SSR. Ser B. 1989; (2):70-2.
[25] GubskiÄ­ IuI, LevitskiÄ­ EL, Primak RG, Golubov MI, Novikova SN. Conformational characteristics and packing of endogenous lipid fractions of transcriptionally active and repressed chromatin. Ukr Biokhim Zh. 1991;63(2):83-9.
[26] Vladimirov YuA, Archakov AI. Lipid peroxidation in biological membranes. Moscow: Nauka, 1972; 252 p.
[27] GubskiÄ­ IuI, LevitskiÄ­ EL, Gol'dshteÄ­n NB, Litoshenko AIa. Lipid peroxidation and the endogenous DNA polymerase activity of fractions of isolated liver chromatin in rats. Biull Eksp Biol Med. 1989;107(3):296-8. Russian.