Biopolym. Cell. 1993; 9(4):39-44.
Structure and Function of Biopolymers
Analysis of antigenic properties of B. pertussis filamentous hemagglutinin RGD-containing site responsible for the reaction with macrophages
1Pkhakadze H. G., 1Kavun E. M., 1Chechet V. A., 1Marinets A. V., 2Radavsky Yu. L., 1Komissarenko S. V.
  1. Palladin Institute of Biochemistry, NAS of Ukraine
    9, Leontovycha Str., Kyiv, Ukraine, 01601
  2. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094

Abstract

The antigen determinant distinguished by the antibodies was found in the region 1094–1102 of filamentous hemagglutinin from B. pertussis. The native FHA, nonapeptide TVQRGDPHQ, its conjugates with albumins from bovine and human sera were used in the experiments. The first conjugate was obtained with the glutaral-dehid, the another one with the use of SPDP. The immurioaffinity chromatography and ELISA were used for the determination of the epitope-specific antibodies. Localization of the antigen determinant in this site of FHA makes it possible to apply the peptide as a component of the synthetic vaccine against whooping-cough.

References

[1] Robinson A., Ashworth L. A. E. Acellular and defined-component vaccines against pertussis. Pathogenesis and immunity in pertussis. Eds. A. C. Wardlaw, R. Parton. New YorkrJohn Willy and Sons, 1988: 399-417.
[2] Ui M., Nogimori K, Tamura M. Islet-activating protein, pertussis toxin: subunit structure and mechanism for its multiple biological actions. Pertussis toxin. Eds. R. D. Sekura et al. New York : Acad, press, 1985: 19-43.
[3] Burns DL, Manclark CR. Role of cysteine 41 of the A subunit of pertussis toxin. J Biol Chem. 1989;264(1):564-8.
[4] Barbieri JT, Moloney BK, Mende-Mueller LM. Expression and secretion of the S-1 subunit and C180 peptide of pertussis toxin in Escherichia coli. J Bacteriol. 1989;171(8):4362-9.
[5] Askelöf P, Rodmalm K, Abens J, Undén A, Bartfai T. Use of synthetic peptides to map antigenic sites of Bordetella pertussis toxin subunit S1. J Infect Dis. 1988;157(4):738-42.
[6] Askelöf P, Rodmalm K, Wrangsell G, Larsson U, Svenson SB, Cowell JL, Undén A, Bartfai T. Protective immunogenicity of two synthetic peptides selected from the amino acid sequence of Bordetella pertussis toxin subunit S1. Proc Natl Acad Sci U S A. 1990;87(4):1347-51.
[7] Mortimer EA Jr, Kimura M, Cherry JD, Kuno-Sakai H, Stout MG, Dekker CL, Hayashi R, Miyamoto Y, Scott JV, Aoyama T, et al. Protective efficacy of the Takeda acellular pertussis vaccine combined with diphtheria and tetanus toxoids following household exposure of Japanese children. Am J Dis Child. 1990;144(8):899-904.
[8] Kimura A, Mountzouros KT, Relman DA, Falkow S, Cowell JL. Bordetella pertussis filamentous hemagglutinin: evaluation as a protective antigen and colonization factor in a mouse respiratory infection model. Infect Immun. 1990;58(1):7-16.
[9] Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990;61(7):1375-82.
[10] Carlsson J, Drevin H, Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 1978;173(3):723-37.
[11] Osterman LA. Chromatography of proteins and nucleic acids. M. Nauka, 1985: 536 p.
[12] Mutter S, Briandt JP, Plane S. et al. Immunochemical reactivity of synthetic peptides. Protides Biol. Fluids Proc. 34-th Colloq. (Oxford, sept. 1986). Oxford, 1986: 87-90.
[13] Geysen HM, Tainer JA, Rodda SJ, Mason TJ, Alexander H, Getzoff ED, Lerner RA. Chemistry of antibody binding to a protein. Science. 1987;235(4793):1184-90.
[14] Carbone FR, Paterson Y. Monoclonal antibodies to horse cytochrome c expressing four distinct idiotypes distribute among two sites on the native protein. J Immunol. 1985;135(4):2609-16.
[15] Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH. The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci U S A. 1985;82(23):8057-61.
[16] Pytela R, Pierschbacher MD, Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985;82(17):5766-70.
[17] Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A. 1991;88(2):345-9.