Biopolym. Cell. 1992; 8(6):3-25.
Reviews
Biogenesis, physiological role, and properties of catalase
1Miroshnichenko O. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

In the present review the data concerning intracellular localization of catalases isolated from different sources are considered; the presence of isoenzymes, advantages and possible reasones of their formation are also discussed. Peculiarities of the enzyme biogenesis and transport are taken into account. Moreover, the factors affecting the cellular catalase activity are examined. Quite a number of data concerning physicochemical and catalytic properties of the enzyme and intracellular processes in which the catalase plays a significant role, are summarized. Examples of the atypical catalases intermediate between catalases and peroxiidases are presented. The possibilities of catalase application in medicine and food industry are reviewed.

References

[1] Deisseroth A, Dounce AL. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev. 1970;50(3):319-75.
[2] Frey-Wyssling A. Comparative Organellography of the Cytoplasm (Reihe: Protoplasmatologia Band III/G). Wien-New York 1973: Springer-Verlag, 106 p
[3] Gould SJ, Keller GA, Schneider M, Howell SH, Garrard LJ, Goodman JM, Distel B, Tabak H, Subramani S. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 1990;9(1):85-90.
[4] Thieringer R, Shio H, Han YS, Cohen G, Lazarow PB. Peroxisomes in Saccharomyces cerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes. Mol Cell Biol. 1991;11(1):510-22.
[5] Khomutovskiy OA, Nikolska OO, Gudkova LV. Ultrastructure of Penicillium vitale Pidopl. et Bilai--producer of catalase and glucose oxidase. Mikrobiol Zh. 1977;39(6):696-701.
[6] Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964;92(1):179-84.
[7] Ruis H. The biosynthesis of catalase. Can J Biochem. 1979;57(9):1122-30.
[8] Furuta S, Hayashi H. Purification and properties of recombinant rat catalase produced in Escherichia coli. J Biochem. 1990;107(5):708-13.
[9] Ramasarma T. Generation of H2O in biomembranes. Biochim Biophys Acta. 1982;694(1):69-93.
[10] Cohen G. Catalase, glutatione peroxidase, superoxide dismutase and cytochrome P-450. Handbook of neurochem. Second edition. Vol. 4. 1983: 315-30.
[11] Jouve HM, Lasauniere C, Pelmont J. Properties of a catalase from a peroxide-resistant mutant of Proteus mirabilis. Can J Biochem Cell Biol. 1983;61(11):1219-27.
[12] Heimberger A, Eisenstark A. Compartmentalization of catalases in Escherichia coli. Biochem Biophys Res Commun. 1988;154(1):392-7.
[13] González E, Harley SM, Brush MD. Purification of glyoxysomal polypeptides. Protoplasma. 1990;156(3):130–8.
[14] Jones GL, Masters CJ. On the synthesis and degradation of the multiple forms of catalase in mouse liver. Arch Biochem Biophys. 1974;161(2):601-9.
[15] Jones GL, Masters CJ. On the turnover and proteolysis of catalase in tissues of the guinea pig and acatalasemic mice. Arch Biochem Biophys. 1976;173(2):463-71.
[16] Robbi M, Lazarow PB. Synthesis of catalase in two cell-free protein-synthesizing systems and in rat liver. Proc Natl Acad Sci U S A. 1978;75(9):4344-8.
[17] Crane D, Holmes R, Masters C. Proteolytic modification of mouse liver catalase. Biochem Biophys Res Commun. 1982;104(4):1567-72.
[18] Mainferme F, Wattiaux R. Effect of lysosomes on rat-liver catalase. Eur J Biochem. 1982;127(2):343-6.
[19] Kendall AC, Keys AJ, Turner JC, Lea PJ, Miflin BJ. The isolation and characterisation of a catalase-deficient mutant of barley (Hordeum vulgare L.). Planta. 1983;159(6):505-11.
[20] Yamaguchi J, Nishimura M, Akazawa T. Maturation of catalase precursor proceeds to a different extent in glyoxysomes and leaf peroxisomes of pumpkin cotyledons. Proc Natl Acad Sci U S A. 1984;81(15):4809-13.
[21] Yamaguchi J, Nishimura M, Akazawa T. Purification and characterization of heme-containing low-activity form of catalase from greening pumpkin cotyledons. Eur J Biochem. 1986;159(2):315-22.
[22] Skadsen RW, Scandalios JG. Evidence for processing of maize catalase 2 and purification of its messenger RNA aided by translation of antibody-bound polysomes. Biochemistry. 1986;25(8):2027-32.
[23] Redinbaugh MG, Wadsworth GJ, Scandalios JG. Characterization of catalase transcripts and their differential expression in maize. Biochim Biophys Acta. 1988;951(1):104-16.
[24] Yamaguchi J, Nishimura M, Akazawa T. Distribution of 59- and 55-kDa catalase in dark- and light-grown pumpkin and various other plant tissues. Plant Cell Physiol. 1987; 28(2):219-26.
[25] Ni W, Trelease RN, Eising R. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase. Biochem J. 1990;269(1):233-8.
[26] Kunce CM, Trelease RN. Heterogeneity of catalase in maturing and germinated cotton seeds. Plant Physiol. 1986;81(4):1134-9.
[27] Kunce CM, Trelease RN, Turley RB. Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase. Biochem J. 1988;251(1):147-55.
[28] Havir EA, McHale NA. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 1987;84(2):450-5.
[29] Eising R, Trelease RN, Ni WT. Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons. Arch Biochem Biophys. 1990;278(1):258-64.
[30] Loewen PC, Switala J. Genetic mapping of katA, a locus that affects catalase 1 level in Bacillus subtilis. J Bacteriol. 1987;169(12):5848-51.
[31] Loewen PC, Switala J. Multiple catalases in Bacillus subtilis. J Bacteriol. 1987;169(8):3601-7.
[32] Loewen PC, Switala J. Purification and characterization of catalase-1 from Bacillus subtilis. Biochem Cell Biol. 1987;65(11):939-47.
[33] Loewen PC. Genetic mapping of katB, a locus that affects catalase 2 levels in Bacillus subtilis. Can J Microbiol. 1989;35(8):807-10.
[34] Zimniak P, Hartter E, Woloszczuk W, Ruis H. Catalase biosynthesis in yeast: formation of catalase A and catalase T during oxygen adaptation of Saccharomyces cerevisiae. Eur J Biochem. 1976;71(2):393-8.
[35] Loewen PC, Triggs BL, George CS, Hrabarchuk BE. Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli. J Bacteriol. 1985;162(2):661-7.
[36] Jones DP. Intracellular catalase function: analysis of the catalatic activity by product formation in isolated liver cells. Arch Biochem Biophys. 1982;214(2):806-14.
[37] Ueda M, Okada H, Hishida T, Teranishi Y, Tanaka A. Isolation of several cDNAs encoding yeast peroxisomal enzymes. FEBS Lett. 1987;220(1):31-5.
[38] Bethards LA, Skadsen RW, Scandalios JG. Isolation and characterization of a cDNA clone for the Cat2 gene in maize and its homology with other catalases. Proc Natl Acad Sci U S A. 1987;84(19):6830-4.
[39] Acevedo A, Williamson JD, Scandalios JG. Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation of Cat3 is superimposed on its quasi-constitutive expression in maize leaves. Genetics. 1991;127(3):601-7.
[40] Goldman BM, Blobel G. Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc Natl Acad Sci U S A. 1978;75(10):5066-70.
[41] Loewen PC. Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity. J Bacteriol. 1984;157(2):622-6.
[42] Whiteside C, Hassan HM. Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone. Arch Biochem Biophys. 1987;257(2):464-71.
[43] Winkler H, Adam G, Mattes E, Schanz M, Hartig A, Ruis H. Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1). EMBO J. 1988;7(6):1799-804.
[44] Hörtner H, Ammerer G, Hartter E, Hamilton B, Rytka J, Bilinski T, Ruis H. Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur J Biochem. 1982;128(1):179-84.
[45] Christman MF, Morgan RW, Jacobson FS, Ames BN. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 1985;41(3):753-62.
[46] Farr SB, Touati D, Kogoma T. Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase. J Bacteriol. 1988;170(4):1837-42.
[47] Carlsson J, Carpenter VS. The recA+ gene product is more important than catalase and superoxide dismutase in protecting Escherichia coli against hydrogen peroxide toxicity. J Bacteriol. 1980;142(1):319-21.
[48] Yonei S, Yokota R, Sato Y. The distinct role of catalase and DNA repair systems in protection against hydrogen peroxide in Escherichia coli. Biochem Biophys Res Commun. 1987;143(2):638-44.
[49] Richter HE, Loewen PC. Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun. 1981;100(3):1039-46.
[50] Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989;108(5):1657-64.
[51] Fujiki Y, Lazarow PB. Post-translational import of fatty acyl-CoA oxidase and catalase into peroxisomes of rat liver in vitro. J Biol Chem. 1985;260(9):5603-9.
[52] Gutteridge JM, Beard AP, Quinlan GJ. Superoxide-dependent lipid peroxidation. Problems with the use of catalase as a specific probe for fenton-derived hydroxyl radicals. Biochem Biophys Res Commun. 1983;117(3):901-7.
[53] Pirozhkov SV, Panchenko LF. Intracellular peroxidation processes in chronic alcohol intoxication. Ukr Biokhim Zh. 1989;61(4):3-16.
[54] Fridovich I. The biology of oxygen radicals. Science. 1978;201(4359):875-80.
[55] Ananthaswamy HN, Eisenstark A. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J Bacteriol. 1977;130(1):187-91.
[56] Singh SP, Kesavan PS. Protection against post-irradiation oxygen-dependent damage in barley seeds by catalase and hydrogen peroxide: probable radiation chemistry. Ind J Exp Biol. 1990; 28(6):566-72.
[57] De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966;46(2):323-57.
[58] Halliwell B. Oxidation of formate by peroxisomes and mitochondria from spinach leaves. Biochem J. 1974;138(1):77-85.
[59] Winquist L, Rannug U, Rannug A, Ramel C. Protection from toxic and mutagenic effects of H2O2 by catalase induction in Salmonella typhimurium. Mutat Res. 1984;141(3-4):145-7.
[60] Demple B, Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983 Aug 4-10;304(5925):466-8.
[61] Sazontova TG, Arkhipenko IuV, Meerson FZ. Increased enzymatic activity of antioxidant protection of the heart in the adaptation of rats to short-term stress exposure. Biull Eksp Biol Med. 1987;104(10):411-3.
[62] Kobayashi H. Relationship between catalase activity and methemoglobin concentration in the blood of acatalasemic, homozygous hypocatalasemic and normal mice. Okayama Igakkai Zasshi. 1987; 99(3-4):389-401.
[63] Halaban R, Moellmann G. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Natl Acad Sci U S A. 1990;87(12):4809-13.
[64] Lorenzo C, Lucas MM, Vivo A, de Felipe MR. Effect of Nitrate on Peroxisome Ultrastructure and Catalase Activity in Nodules of Lupinus albus L. cv. Multolupa. J Exp Bot. 1990;41(12):1573–8.
[65] Imlay JA, Linn S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol. 1987;169(7):2967-76.
[66] Eisenstark A, Perrot G. Catalase has only a minor role in protection against near-ultraviolet radiation damage in bacteria. Mol Gen Genet. 1987;207(1):68-72.
[67] Wolin MS, Burke TM. Hydrogen peroxide elicits activation of bovine pulmonary arterial soluble guanylate cyclase by a mechanism associated with its metabolism by catalase. Biochem Biophys Res Commun. 1987;143(1):20-5.
[68] Lambert CE, Shank RC. Role of formaldehyde hydrazone and catalase in hydrazine-induced methylation of DNA guanine. Carcinogenesis. 1988;9(1):65-70.
[69] DeMaster EG, Shirota FN, Nagasawa HT. The metabolic activation of cyanamide to an inhibitor of aldehyde dehydrogenase is catalyzed by catalase. Biochem Biophys Res Commun. 1984;122(1):358-65.
[70] Handler JA, Thurman RG. Hepatic ethanol metabolism is mediated predominantly by catalase-H2O2 in the fasted state. FEBS Lett. 1988;238(1):139-41.
[71] Thurman RG, Handler JA. New perspectives in catalase-dependent ethanol metabolism. Drug Metab Rev. 1989;20(2-4):679-88.
[72] Handler JA, Thurman RG. Redox interactions between catalase and alcohol dehydrogenase pathways of ethanol metabolism in the perfused rat liver. J Biol Chem. 1990;265(3):1510-5.
[73] Havir EA, McHale NA. Regulation of Catalase Activity in Leaves of Nicotiana sylvestris by High CO(2). Plant Physiol. 1989;89(3):952-7.
[74] Yamazaki I. Catalase. Metalloproteins: Chem Prop Biol Eff. Tokyo-Amsterdam etc, 1988: 224-9.
[75] Srivastava SK, Ansari NH. The peroxidatic and catalatic activity of catalase in normal and acatalasemic mouse liver. Biochim Biophys Acta. 1980;633(3):317-22.
[76] Takeda A, Hirano K, Shiroya Y, Samejima T. On the denaturation of porcine erythrocyte catalase with alkali, urea, and guanidine hydrochloride in relation to its subunit structure. J Biochem. 1983;93(4):967-75.
[77] Hochman A, Shemesh A. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem. 1987;262(14):6871-6.
[78] Scott D, Hammer F. Properties of Aspergillus catalase. Enzymologia. 1960;22:229-37.
[79] Nadler V, Goldberg I, Hochman A. Comparative study of bacterial catalases. Biochim Biophys Acta. 1986;882(2):234–41.
[80] Yumoto I, Fukumori Y, Yamanaka T. Purification and characterization of catalase from a facultative alkalophilic Bacillus. J Biochem. 1990;108(4):583-7.
[81] Oshino N, Oshino R, Chance B. The characteristics of the "peroxidatic" reaction of catalase in ethanol oxidation. Biochem J. 1973;131(3):555-63.
[82] Pratt J Techniques and Topics in Bioinorganic Chemistry. Londom Macmillan. 1975
[83] Kremer ML. Mechanism of catalase action. J Chem Soc , Faraday Trans. 1983;79(9):2125-33.
[84] Frew JE, Jones P. Structure and functional properties of peroxidases and catalases. Adv Inorg Bioinorg Mech. 1984; 3:175-212.
[85] Chance B, Oshino N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J. 1971;122(2):225-33.
[86] Orii Y, Sakai Y, Ozawa K. Ubiquitous formation of catalase compound II in hemoglobin-free perfused rat liver and detection of novel spectral species. Biochem Biophys Res Commun. 1989;162(3):1272-8.
[87] Chuang WJ, Heldt J, Van Wart HE. Resonance Raman spectra of bovine liver catalase compound II. Similarity of the heme environment to horseradish peroxidase compound II. J Biol Chem. 1989;264(24):14209-15.
[88] Aebi H. Catalase. Meth enzymatic anal. New York : Acad, press, 1963: 885-95.
[89] Margoliash E, Novogrodsky A, Schejter A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J. 1960;74:339-48.
[90] Chang JY, Schroeder WA. Reaction of 3-amino-1:2:4-triazole with bovine liver catalase and human erythrocyte catalase. Arch Biochem Biophys. 1972;148(2):505-8.
[91] Johnston MA, Delwiche EA. Isolation and characterization of the cyanide-resistant and azide-resistant catalase of lactobacillus plantarum. J Bacteriol. 1965;90:352-6.
[92] Khangulov SV, Barynin VV, Melik-Adamyan VR, Grebenko AI, Voevodskaya NV, Blumenfeld LA, Dobryakov SN, U'yasova VB. EPR study of T-catalase from Thermus thermophilus. Russian Journal of Bioorganic Chemistry. 1986, 12(6):741-8.
[93] Khangulov SV, Voevodskaya NV, Barynin VV,Grebenko AI, Melik-Adamian VR. Relation of paramagnetic characteristics of the active center of T-catalase to the nature of ligands and redox state of the manganese ions. Biofizika. 1987; 32(6): 960-6.
[94] Khangulov SV, Andreeva NE, Gerasimenko VV. et al. Manganese-containing catalase: catalysis by binuclear manganese clusters. Zh Fiz Khim. 1990. 64(1):17-24.
[95] ProzorovskiÄ­ VN, Romantsev FE, Grebenshchikova OG, Kuranova IP, Konareva NV. Physico-chemical characteristics of catalases from Micrococcus sp. n. Biokhimiia. 1984;49(2):209-15.
[96] Jouve HM, Tessier S, Pelmont J. Purification and properties of the Proteus mirabilis catalase. Can J Biochem Cell Biol. 1983;61(1):8-14.
[97] Jacob GS, Orme-Johnson WH. Catalase of Neurospora crassa. 1. Induction, purification, and physical properties. Biochemistry. 1979;18(14):2967-75.
[98] Knoch M, van Pée KH, Vining LC, Lingens F. Purification, properties and immunological detection of a bromoperoxidase-catalase from Streptomyces venezuelae and from a chloramphenicol-nonproducing mutant. J Gen Microbiol. 1989;135(9):2493-502.
[99] Morita H, Takamiya K. A catalase in an aerobic photosynthetic bacterium, Erythrobacter sp. och 114. Physiol plantarum. 1989; 76(3):47.
[100] Abrams JJ, Webster DA. Purification, partial characterization, and possible role of catalase in the bacterium Vitreoscilla. Arch Biochem Biophys. 1990;279(1):54-9.
[101] Claiborne A, Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem. 1979;254(10):4245-52.
[102] Claiborne A, Malinowski DP, Fridovich I. Purification and characterization of hydroperoxidase II of Escherichia coli B. J Biol Chem. 1979;254(22):11664-8.
[103] Loewen PC, Switala J. Purification and characterization of catalase HPII from Escherichia coli K12. Biochem Cell Biol. 1986;64(7):638-46.
[104] Triggs-Raine BL, Doble BW, Mulvey MR, Sorby PA, Loewen PC. Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bacteriol. 1988;170(9):4415-9.
[105] Enzymes in medicine, food industry and agriculture. Kiev: Naukova Dumka, 1968: 141-216.
[106] Wolf G, Hammes WP. Effect of hematin on the activities of nitrite reductase and catalase in lactobacilli. Arch Microbiol. 1988;149(3):220–4.
[107] Chang TM, Poznansky MJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalasaemic mice. Nature. 1968;218(5138):243-5.
[108] Artemchik VD, Eremin AN, Metelitsa DI. Catalytic properties and stability of catalase in reversed micelles of aerosol OT in octane. Biokhimiia. 1990;55(2):293-8.
[109] Greenwald RA. Superoxide dismutase and catalase as therapeutic agents for human diseases. A critical review. Free Radic Biol Med. 1990;8(2):201-9. Review.
[110] Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem. 1990;184(2):193-9.
[111] Ogata M, Satoh Y. Isoelectric focusing of catalase from acatalasemic mouse and human blood, and cultured human skin fibroblasts. Electrophoresis. 1988;9(3):128-31.
[112] Alonso A, Visedo G, Sancho M, Fernández-Piqueras J. Characterization of human catalase by isoelectric focusing in presence of urea. Electrophoresis. 1990;11(8):635-8.
[113] Wen JK, Osumi T, Hashimoto T, Ogata M. Molecular analysis of human acatalasemia. Identification of a splicing mutation. J Mol Biol. 1990;211(2):383-93.
[114] Verduyn C, Gluseppin MLF, van Dijken IP. Catalase: an indispensable enzyme in yeast? Proc 4th Eur Congr Biotechnol. (Amsterdam, June 14-19, 1987) : Abstr. Extend abstr. Amsterdam, 1987; Vol. 3:371.
[115] Rabilloud T, Asselineau D, Miquel C, Calvayrac R, Darmon M, Vuillaume M. Deficiency in catalase activity correlates with the appearance of tumor phenotype in human keratinocytes. Int J Cancer. 1990;45(5):952-6.