Biopolym. Cell. 1991; 7(6):15-32.
Structure and Function of Biopolymers
The possibilities of the soft-ionization mass-spectrometry in the molecular-biological studies
- Institute of Applied Physics, NAS of Ukraine
58, Petropavlivska Str., Sumy, Ukraine, 40030
Abstract
The results which demonstrate the possibilities of the soft-ionization mass-spectrometry (SI-MS) for molecular-biological studies in two direction–thermodynamic and analytical-structural are given. The method of the temperature-dependent field ionization mass-spectrometry which was the first time used for measuring of the thermodynamic characteristics of the number biological associates: Watson-Crick, mispairing and other base pairs, «aminoacid-base» complexes, hydrates of the bases and their pairs are described. The possibilities of the SI-MS for study of the hydrolysis the antitumour drugs in the physiological solutions and adducts of their interactions with DNA are shown.
Full text: (PDF, in Russian)
References
[1]
Cooks RG, Hand OW. Tandem mass spectrometry at low kinetic energy. Nucl Instrum Methods Phys Res B. 1987; 29(1-2):427-36.
[2]
Beckey HD. Principles of field desorption mass spectrometry. New York: Pergamon press, 1978. 348 p.
[3]
Korol' EN, Lobanov VV, V. A. Nazarenko VA, Pokrovskiy VA. Physical basis of the field of mass spectrometry. Kiev: Naukova Dumka, 1987; 196 p.
[4]
Benninghoveti A. Gaede-Langmuir lecture: static SIMS applications - form silicon single crystal oxidation to DNA sequencing. J Vac Sci Technol. 1985; A3, N 3:451-60.
[5]
Hobza P, Zahradnik R. Intermolecular complexes: The role of van der Waals systems in physical chemistry and in the biodisciplines (studies in physical and theoretical chemistry). Elsevier Science Ltd 1988; 308 p.
[6]
Kyogoku Y, Lord RC, Rich A. An infrared study of the hydrogen-bonding specificity of hypoxanthine and other nucleic acid derivatives. Biochim Biophys Acta. 1969;179(1):10-7.
[7]
Chen MC, Lord RC. Re-investigation of specific hydrogen bonding of certain adenine and uracil derivatives by infrared spectroscopy. Biochim Biophys Acta. 1974;340(1):90-4.
[8]
Petersen SB, Led JJ. Watson-Crick base pairing between guanosine and cytidine studied by carbon-13 nuclear magnetic resonance spectroscopy. J Am Chem Soc. 1981;103(18):5308–13.
[9]
Kan LS, Chandrasegaran S, Pulford SM, Miller PS. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1983;80(14):4263-5.
[10]
Iwahashi H, Sugeta H, Kyogoku Y. Detection of separated amino proton resonance signals of adenine derivatives of low temperature and its application to estimation of population of the adenine-uracil dimers in solution. Biochemistry. 1982;21(4):631-8.
[11]
Sukhodub LF, Yanson IK. Mass spectrometric studies of binding energies for nitrogen bases of nucleic acids in vacuo. Nature. 1976;264(5583):245-7.
[12]
Yanson IK, Teplitsky AB, Sukhodub LF. Experimental studies of molecular interactions between nitrogen bases of nucleic acids. Biopolymers. 1979;18(5):1149-70.
[13]
Sukhodub LF. Interactions between nucleotide bases in coplanar and stacking dimers under vacuum. Mass spectrometric study. Biofizika. 1987;32(6):994-1005.
[14]
Sukhodub LF. Interactions and hydration of nucleic acid bases in a vacuum. Experimental study. Chem Rev. 1987;87(3):589–606.
[15]
Poltev VI. Non-bonded interactions and conformations of DNA: Dis .... Dr. nat. mat. Sciences. Pushchino, 1985; 273 p.
[16]
Teplitskiĭ AB, Sukhodub LF. Energetics of nucleotide mispairing. Mass spectrometric studies in a vacuum. Biofizika. 1990;35(5):876-7.
[17]
Person WB, Szczepaniak K, Szczesniak M, Kwiatkowski JS, Hernandez L, Czerminski R. Tautomerism of nucleic acid bases and the effect of molecular interactions on tautomeric equilibria. J Mol Struct. Elsevier BV; 1989;194:239–58.
[18]
Poltev VI, Shulyupina NV. Simulation of interactions between nucleic acid bases by refined atom-atom potential functions. J Biomol Struct Dyn. 1986;3(4):739-65.
[19]
Teplitskiĭ AB, Galetich IK, Sukhodub LF. Energy formation of amino acid-base complexes in a vacuum (glutamine, asparagine-uracil, thiamine). Biofizika. 1990;35(5):709-10.
[20]
Sharafutdinov MP, Danilov VI, Poltev VI. A fluoretical study of adenine methylated derivativesin a vacuum. Doklady Akad Nauk Ukr SSR. Ser B. 1983;(12):69-72.
[21]
Del Bene JE. Molecular orbital theory of the hydrogen bond. 24. Ground-state water-uracil complexes. J Comp Chem. 1981;2(2):188–99.
[22]
Del Bene JE. Molecular orbital theory of the hydrogen bonding. 21. Water with the purine bases adenine and guanine. J Mol Struct. 1984; 108(3-4):179-97.
[23]
Gayvoronskiy DA, Sukhodub LF. Low temperature console to the field ion source mass spectrometer MI 1201. Instruments and experimental techniques. 1983. 5:173-176.
[24]
Verkin BI, Sukhodub LF, Gaĭvoronskiĭ DA. Study of nucleotide base polyhydrates in a vacuum by low-temperature field mass spectrometry. Dokl Akad Nauk SSSR. 1984;277(5):1252-5.
[25]
Sukhodub LF, Teplitskiĭ AB, Lodianoĭ IuM. Hydration of complementary 9-methyladenine.1-methyluracil pairs at low temperatures according to data from field mass spectrometry. Biofizika. 1989;34(2):181-6.
[26]
Teplitsky AB, Sukhodub LF. Polyhydration of associates of nucleotide bases at low temperatures. Stud biophys. 1987; 122(1-3):107-12.
[27]
Teplukhin AV, Poltev VI, Shulyupina NV, Malenkov GG. Monte Carlo simulation of hydration of the nucleic acid fragments. J Biomol Struct Dyn. 1989;7(1):75-99.
[28]
Danilov VI, Tolokh IS. Hydration of uracil and thymine methylderivatives: a Monte Carlo simulation. J Biomol Struct Dyn. 1990;7(5):1167-83.
[29]
Verkin BI, Sukhodub LF, Moiseenko AA. Study fragmentation fopurina and its metabolite by field ionization. Dokl Akad Nauk SSSR. 1982; 265(1):115-20.
[30]
Lekyavichyus RK, Slapishte GV. Genetics and selection to the national economy. Vilnius; Kaunas, 1977. 98 p.
[31]
Sukhodub LF, MV Kosevich MV, Boldeskul IE, Procenko LD. Mass spectrometric investigation of aryl-diethylene triamides phosphoric acid. Ukr Khim Zh. 1989; 55(6):642-5.
[32]
Sukhodub LF, MV Kosevich MV, Boldeskul IE, Procenko LD. Mass spectrometric investigation of acetyl-diethylene triamides phosphoric acid. Ukr Khim Zh. 1989; 55(7):752-7.
[33]
Protsenko LD. Study on ethylene amine derivatives of phosphorus acids and pyrimidine: Author. dis .... Dr. Khim. nauk. Kiev, 1970; 43 p.
[34]
Rebrova ON, Biiuskhin VN, Malinovskii TI, Protsenko LD, Dneprova TN. The crystal- and molecular structure of phosphoric acid N-phenyl- N’N’N”N” diethylenetriamide. Dokl Akad Nauk SSSR. 1983; 272(4):870-3
[35]
Pen’kovskii VV, Boldeskul IE. Quantum-chemical study of the amides of O,O-dimethylphosphoric acid. Theor Exp Chem. 1984;20(2):188–92.
[36]
Pyatigorskaya TL, Zhilkova OY, Arkhangelova NM, Shelkovskii VS. Investigation of the stability of triethylenethiophosphoramide in aqueous and aqueous salt solutions. Pharmaceutical Chemistry Journal. 1984;18(3):198–203.
[37]
Pyatigorskaya TL, Zhilkova OY, Shelkovskii VS, Kosevich MV, Grizodub AI, Troyan NN, et al. Study of the conversion products of thiophosphamide in aqueous solution by thin layer chromatography and mass spectrometry. Pharmaceutical Chemistry Journal. 1985;19(10):718–23.
[38]
Pyatigorskaya TL, Zhilkova OY, Shelkovsky VS, Arkhangelova NM, Grizodub AI, Sukhodub LF. Hydrolysis of 1,1˙,1″-phosphinothioylidinetrisaziridine (thiotepa) in aqueous solution. Biol Mass Spectrom. 1987;14(4):143–8.
[39]
Sukhodub LF. The use of soft-ionization mass-spectrometry in biochemistry. Ukr Biokhim Zh. 1989;61(4):16-30.
[40]
Mellet LB, Wood LA. The comparative physiological disposition of the thioTEPA and TEPA in the dog. Cancer Res. 1960; 20(4):524-32.
[41]
Cohen BE, Egorin MJ, Nayar MS, Gutierrez PL. Effects of pH and temperature on the stability and decomposition of N,N'N"-triethylenethiophosphoramide in urine and buffer. Cancer Res. 1984;44(10):4312-6.
[42]
Kosevich MV. Molecular analysis of drugs and products of their interaction with DNA and its components according to soft ionization mass spectrometry: Dis .... kand. fiz- mat. nauk. Kharkiv, 1989. 180 p.
[43]
Sukhodub LF, Kosevich MV, Shelkovskiĭ VS, Piatigorskaia TL, Zhilkova OIu. Direct observation of adducts between nitrogen bases and thio-TEPA using soft ionization mass spectrometry. Biofizika. 1990;35(4):549-51.
[44]
Chemotherapy of malignant tumors. Ed. N N Blokhin. M.: Meditsina, 1977; 320 p.
[45]
Ross U. Biological alkylating agents. M.: Meditsina. 1964; 240 p.
[46]
Sukhodub LF, Shekovskiĭ VS, Kosevich MV, Piatigorskaia TL, Zhilkova OIu. Mass spectrometric study of thiophosphamide interaction with nucleic acid bases. Dokl Akad Nauk SSSR. 1985;283(3):714-6.
[47]
Sukhodub LF, Shelkovsky VS, Kosevich MV, Pyatigorskaya TL, Zhilkova OY. Nucleic acid base complexes with thiotepa as revealed by field ionization mass spectrometry. Biol Mass Spectrom. 1986;13(4):167–70.
[48]
Dubinin NP, Saprykina EG. Chain Reaction in chemical mutagenesis. Dokl Akad Nauk SSSR. 1964; 158(4):956-9.
[49]
Sidorov BN., Sokolov NN., Andreev VS. Highly active secondary alkylating mutagens. Genetika. 1966;2(4):269-78.
[50]
Harrap KR, Gascoigne EW. The interaction of bifunctional alkylating agents with the DNA of tumour cells. Eur J Cancer. 1976;12(1):53-9.
[51]
Serebrianyĭ AM, Andrievskiĭ GV, Bekker AR, Sibel'dina LA, Povolotskaia MI. Directions of alkylation of deoxyguanosine and deoxyguanylic acid by thio-TEPA. Bioorg Khim. 1986;12(4):499-506.
[52]
Serebrianyĭ AM, Andrievskiĭ GV, Bekker AR, Sibel'dina LA, Sharova OL. The structure of products of modification of nucleotides and DNA by ethyleneimine and thio-TEPA. Bioorg Khim. 1987;13(6):786-92.
[53]
Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol. 1975;15(0):219-84.
[54]
Voloshchuk TP, Patskovskiĭ IuV, Potopal'skiĭ AI. Alkylation of nucleic acid components by ethyleneimine derivatives. I. Alkylation of bases. Bioorg Khim. 1990;16(7):981-90.
[55]
Patskovsky YuV, Voloshchuk TP, Potopalsky AI. Some properties of the reaction between polynucleotides and thiophosphamide. Biopolym Cell. 1989; 5(5):64-70.