Biopolym. Cell. 1991; 7(3):82-89.
Structure and Function of Biopolymers
Action of clotting (α) and nonclotting (γ) thrombins on bovine fibrinogen N-terminal fragments
1Sereyskaya A. A., 1Smirnova I. V.
  1. Institute of Bioorganic Chemistry and Petrochemistry, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

Bovine fibrinogen N-terminal fragments were hydrolysed by native α-thrombin and its nonclotting γ-form (with disruptured additional centre for high molecular substrates recognition). It was found that susceptible bond 19–20 of Ace chain is cleaved by α-thrombin more efficiently than γ-form both in the structure of N-terminal disulfide knot and in the isolated Atx fragment 1–54. This difference disappears as a result of peptide bonds splitting due to Ace Trp36 and Trp44 modification. The rate of α-thrombin hydrolysis of modified substrates is lowered significantly ad reached the γ-thrombin level. The data presented here establish that 1) the specific site complementary to thrombin additional recognition centre is localized wiihinn the sequence 37–54 of bovine fibrinogen Act chain; 2) interactions between fibrinogen and thrombin recognition sites arc necessary for effective 19–20 bond hydrolysis.

References

[1] Blombäck B. Specificity of thrombin and its action on fibrinogen. Ann N Y Acad Sci. 1986;485:120-3.
[2] Fenton JW 2nd. Thrombin specificity. Ann N Y Acad Sci. 1981;370:468-95.
[3] Fenton JW 2nd. Regulation of thrombin generation and functions. Semin Thromb Hemost. 1988;14(3):234-40.
[4] Strukova SM, Sereyskaya AA, Osadchuk TV. Structural basis of specificity of thrombin. Usp Sovrem Biol. 1989; 107(1):41-54.
[5] Hogg DH, Blombäck B. The mechanism of the fibrinogen-thrombin reaction. Thromb Res. 1978;12(6):953-64.
[6] van Nispen JW, Hageman TC, Scheraga HA. Mechanism of action of thrombin on fibrinogen. The reaction of thrombin with fibrinogen-like peptides containing 11, 14, and 16 residues. Arch Biochem Biophys. 1977;182(1):227-43.
[7] Fenton JW, Landis BH, Walz DA et al. Human thrombin: Preparative evaluation, structural properties, and enzymic specificity. In: Chem and physiol. of human plasma proteins. Ed. D. H. Bing. New York: Pergamon press, 1979:151-73.
[8] Gershkovich AA, Kibirev VK. Chromogenic and fluorogenic peptide substrates of proteolytic enzymes. Bioorg Khim. 1988;14(11):1461-88.
[9] Varetskaya T. Microheterogeneous fibrinogen: Criofibrinogen. Ukr Biokhim Zh. 1960. 32, 1:13-24.
[10] Blombäck B, Hessel B, Iwanaga S, Reuterby J, Blombäck M. Primary structure of human fibrinogen and fibrin. I. Clevage of fibrinogen with cyanogen bromide. Isolation and characterization of NH 2 -terminal fragments of the ("A") chain. J Biol Chem. 1972;247(5):1496-512.
[11] Henschen A, Edman P. Large scale preparation of S-carboxymethylated chains of human fibrin and fibrinogen and the occurrence of -chain variants. Biochim Biophys Acta. 1972;263(2):351-67.
[12] Ugarova TP. Hem-coagulation enzymes from snake venoms. Biochemistry of animals and humans. Kiev: Naukova Dumka, 1989. Iss 13:65-74.
[13] Korneliuk AI, Shilin VV, Gudzera OI, Rozhko OT, Matsuka GKh. Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide. Bioorg Khim. 1985;11(5):605-12.
[14] Pekhnik IV, KheÄ­lomskiÄ­ AB, Chikurova EV. Isolation and identification of N-terminal fragments of the A-alpha chain of bovine fibrinogen. Ukr Biokhim Zh. 1991;63(2):3-8.
[15] Udenfriend S, Stein S, Böhlen P, Dairman W, Leimgruber W, Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972;178(4063):871-2.
[16] Boissel JP, Le Bonniec B, Rabiet MJ, Labie D, Elion J. Covalent structures of beta and gamma autolytic derivatives of human alpha-thrombin. J Biol Chem. 1984;259(9):5691-7.
[17] Elion J, Boissel JP, Le Bonniec B, Bezeaud A, Jandrot-Perrus M, Rabiet MJ, Guillin MC. Proteolytic derivatives of thrombin. Ann N Y Acad Sci. 1986;485:16-26.
[18] Martinelli RA, Inglis AS, Rubira MR, Hageman TC, Hurrell JG, Leach SJ, Scheraga HA. Amino acid sequences of portions of the alpha and beta chains of bovine fibrinogen. Arch Biochem Biophys. 1979;192(1):27-32.
[19] Timpl R, Fietzek PP, Wachter E, Van Delden V. Disulfide-linked cyanogen bromide peptides of bovine fibrinogen. II. Isolation and sequence analysis of the chain constituents from the amino terminal region. Biochim Biophys Acta. 1977;490(2):420-9.
[20] Vali Z, Scheraga HA. Localization of the binding site on fibrin for the secondary binding site of thrombin. Biochemistry. 1988;27(6):1956-63.
[21] Pekhnik IV, Selishcheva MYu, Sereyskaya AA. The effect of ionic strength on enzymatic activity of thrombin. Biopolym Cell. 1990; 6(3):59-65.
[22] SereÄ­skaia AA, Pekhnik IV, Osadchuk TV. The effect of various forms of thrombin on nonspecific high molecular weight substrates. Biokhimiia. 1990;55(4):645-52.
[23] Sereiskaia AA, Strukova SM. Characteristics of the effect of thrombin on macromolecular substrates. Dokl Akad Nauk SSSR. 1985;282(2):481-4.
[24] Lewis SD, Lorand L, Fenton JW 2nd, Shafer JA. Catalytic competence of human alpha- and gamma-thrombin in the activation of fibrinogen and factor XIII. Biochemistry. 1987;26(24):7597-603.
[25] Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989;8(11):3467-75.