Biopolym. Cell. 1990; 6(5):23-45.
Reviews
Some aspects of molecular cyanobacterial genetics
- Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
Kiev, USSR
Abstract
The review is devoted to the molecular cyanobacterial genetics. Data on systems of genetic exchange, endogenous plasmids, mobile genetic elements, specific endonucleases, developmental gene rearrangements, gene cloning and cloning vectors are summarized.
Full text: (PDF, in Russian)
References
[1]
Shestakov SV. Prospects for the use of phototrophic bacteria in biotechnology. Biotechnology. Ed. AA Bayev. Moscow, Nauka, 1984; 212-6.
[2]
Latorre C, Lee JH, Spiller H, Shanmugam KT. Ammonium ion-excreting cyanobacterial mutant as a source of nitrogen for growth of rice: A feasibility study. Biotechnol Lett. 1986;8(7):507–12.
[3]
Padhy RN. Agriculture and environment: Cyanobacteria employed as fertilizers and waste disposers. Nature. 1985;317(6037):475–6.
[4]
Asato Y, Ginoza HS. Separation of small circular DNA molecules from the blue-green alga Anacystis nidulans. Nat New Biol. 1973;244(135):132-3.
[5]
Lau RH, Sapienza C, Doolittle WF. Cyanobacterial plasmids: Their widespread occurrence, and the existence of regions of homology between plasmids in the same and different species. Molec Gen Genet. 1980;178(1):203–11.
[6]
Felkner RH, Barnum SR. Plasmid content and homology of 16 strains of filamentous, nonheterocystous cyanobacteria. Curr Microbiol. 1988;17(1):37–41.
[7]
Lambert GR, Scott JG, Carr NG. Characterization and cloning of extrachromosomal DNA from filamentous cyanobacteria. FEMS Microbiology Lett. 1984;21(2):225–31.
[8]
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J Gen Microbiol. 1979;111(1):1–61.
[9]
Rippka R, Cohen-Bazire G. The cyanobacteriales: A legitimate order based on the type strain Cyanobacterium stanieri? Ann Inst Pasteur Microbiol. 1983;134(1):21–36.
[10]
Friedberg D, Seijffers J. Plasmids in two cyanobacterial strains. FEBS Lett. 1979;107(1):165-8.
[11]
Rebiere M-C, Anne-Marie-Castets, Houmard J, Tandeau de Marsac N. Plasmid distribution among unicellular and filamentous cyanobacteria: Occurrence of large and mega-plasmids. FEMS Microbiol Lett. 1986;37(3):269–75.
[12]
Potts M. Distribution of plasmids in cyanobacteria of the LPP group. FEMS Microbiol Lett. 1984;24(2-3):351–4.
[13]
Franche C, Reynaud PA. Characterization of several tropical strains of Anabaena and Nostoc: morphological and physiological properties, and plasmid content. Ann Inst Pasteur Microbiol. 1986;137A(2):179-97.
[14]
De Marsac T. N., Houmard J. Advances in cyanobacterial molecular genetics. The cyanobacteria. Eds P. Fay, C. Van Baalen. Amsterdam: Elsevier, 1987:251-302.
[15]
Lambert GR, Carr NG. Rapid small-scale plasmid isolation by several methods from filamentous cyanobacteria. Arch Microbiol. 1982;133(2):122–5.
[16]
De Marsac T. N. Phycobilisomes and complementary chromatic adaptatio n. Bull Inst Pasteur. 1983; 81:201-54.
[17]
Lau RH, Doolittle WF. Covalently closed circular DNAs in closely related unicellular cyanobacteria. J Bacteriol. 1979;137(1):648-52.
[18]
van den Hondel CA, Keegstra W, Borrias WE, van Arkel GA. Homology of plasmids in strains of unicellular Cyanobacteria. Plasmid. 1979;2(3):323-33.
[19]
Van den Hondel CAMJJ, van Arkel GA. Development of a cloning system in cyanobacteria. Antonie Van Leeuwenhoek. 1980;46(2):228–9.
[20]
Wolk CP, Vonshak A, Kehoe P, Elhai J. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci U S A. 1984;81(5):1561-5.
[21]
Schmetterer G, Wolk CP. Identification of the region of cyanobacterial plasmid pDU1 necessary for replication in Anabaena sp. strain M-131. Gene. 1988;62(1):101-9.
[22]
Laudenbach DE, Straus NA, Gendel S, Williams JP. The large endogenous plasmid of Anacystis nidulans: Mapping, cloning and localization of the origin of replication. Mol Gen Genet. 1983;192(3):402–7.
[23]
Laudenbach DE, Straus NA, Williams JP. Evidence for two distinct origins of replication in the large endogenous plasmid of Anacystis nidulans R2. Molec Gen Genet. 1985;199(2):300–5.
[24]
Walsby AE. Absence of gas vesicle protein in a mutant of Anabaena flos-aquae. Arch Microbiol. 1977;114(2):167–70.
[25]
Hauman J. H. Is a plasmid (s) involved in toxicity of Microcystis aeruginosa? The water environment. Algal toxins and health . Ed. W. W. Carmichael. New York; London: Plenum press, 1981. 20:97-102.
[26]
Schwabe W, Weihe A, Börner T, Henning M, Kohl J-G. Plasmids in toxic and nontoxic strains of the cyanobacteriumMicrocystis aeruginosa. Curr Microbiol. 1988; 17(3):133-7.
[27]
Vakeria D, Codd GA, Bell SG, Beattie KA, Priestley IM. Toxicity and extrachromosomal DNA in strains of the cyanobacterium Microcystis aeruginosa . FEMS Microbiol Lett. 1985;29(1-2):69–72.
[28]
Whitehead PR, Brown NL. Three restriction endonucleases from Anabaena flos-aquae. J Gen Microbiol. 1985;131(4):951-8.
[29]
Whitehead PR, Brown NL. A simple and rapid method for screening bacteria for type II restriction endonucleases: enzymes in Aphanothece halophytica. Arch Microbiol. 1985;141(1):70-4.
[30]
Castets A-M, Houmard J, Tandeau de Marsac N. Is cell motility a plasmid-encoded function in the cyanobacterium Synechocystis 6803? FEMS Microbiol Lett. 1986;37(3):277–81.
[31]
Simon RD. Survey of extrachromosomal DNA found in the filamentous cyanobacteria. J Bacteriol. 1978;136(1):414-8.
[32]
Bogorad L, Gendel SM, Haury JH, Koller KP. Photomorphogenesis and complementary chromatic adaptation in Fremyella diplosiphon. Photosynthetic prokaryotes: cell differentiation and function. Eds G. C. Papageorgion1 L. Packer. New York: Elsevier, 1983:119-26.
[33]
Chauvat F, Astier C, Vedel F, Joset-Espardellier F. Transformation in the cyanobacterium Synechococcus R2: improvement of efficiency; role of the pUH24 plasmid. Mol Gen Genet. 1983;191(1):39-45.
[34]
Yanulaytis AA. Restriction enzymes and their use. Itogi nauki i tekhniki. Moscow, VINITI, (Ser. Biotekhnologiya; Vol. 17). 1989; 12-25
[35]
Waard A, Duyvesteyn M. Are sequence-specific deoxyribonucleases of value as taxonomic markers of cyanobacterial species? Arch Microbiol. 1980;128(2):242–7.
[36]
Herrero A, Elhai J, Hohn B, Wolk CP. Infrequent cleavage of cloned Anabaena variabilis DNA by restriction endonucleases from A. variabilis. J Bacteriol. 1984;160(2):781-4.
[37]
Lambert GR, Carr NG. Resistance of DNA from filamentous and unicellular cyanobacteria to restriction endonuclease cleavage. Biochim Biophys Acta. 1984;781(1-2):45-55.
[38]
Hondel CAMJJ, Leen RW, Arkel GA, Duyvesteyn M, Waard A. Sequence-specific nucleases from the cyanobacterium Fremyella diplosiphon, and a peculiar resistance of its chromosomal DNA towards cleavage by other restriction enzymes. FEMS Microbiol Lett. 16(1):7–12.
[39]
Padhy RN, Hottat FG, Coene MM, Hoet PP. Restriction analysis and quantitative estimation of methylated bases of filamentous and unicellular cyanobacterial DNAs. J Bacteriol. 1988;170(4):1934-9.
[40]
Geier GE, Modrich P. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem. 1979;254(4):1408-13.
[41]
Currier TC, Wolk CP. Characteristics of Anabaena variabilis influencing plaque formation by cyanophage N-1. J Bacteriol. 1979;139(1):88-92.
[42]
Szekeres M. Phage-induced development of a site-specific endonuclease in Anacystis nidulans, a cyanobacterium. Virology. 1981;111(1):1-10.
[43]
Szekeres M, Szmidt AE, Török I. Evidence for a restriction/modification-like system in Anacystis nidulans infected by cyanophage AS-1. Eur J Biochem. 1983;131(1):137-41.
[44]
Duyvesteyn MGC, Korsuize J, Waard A, Vonshak A, Wolk CP. Sequence-specific endonucleases in strains of Anabaena and Nostoc. Arch Microbiol. 1983;134(4):276–81.
[45]
Reaston L, Can NG. Purification of the modification enzyme M. Nsp MAC 1 from the filamentous cyanobacterium Nostic PCC 8009. Vth Int. symp. on photosynthetic prokaryotes: Abstr. Grindelvald, 1985:332.
[46]
Gallagher ML, Burke WF. Sequence-specific endonuclease from the transformable cyanobacterium Anacystis nidulans R2. FEMS Microbiol Lett. 1985;26(3):317–21.
[47]
Masel D, Castes AM, Houmard J, de Marsak NT. Cyanobacterial insertion elements: characterization and potential. Int. symp. on photosynthetic prokaryotes: Abstr. Noodwijkerhout, 1988: 227.
[48]
Machray GC, Vakeria D, Codd GA, Stewart WD. Insertion sequence IS2 in the cyanobacterium Chlorogloeopsis fritschii. Gene. 1988;67(2):301-5.
[49]
Shestakov SV, Khyen NT. Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet. 1970;107(4):372-5.
[50]
Wilmotte AMR, Stam WT. Genetic relationships among cyanobacterial strains originally designated as 'anacystis nidulans' and some other synechococcus strains. Microbiology. 1984; 130(10):1:2737-40.
[51]
Herdman M, Janvier M, Waterbury JB, RIPPKA R, STANIER RY, Mandel M. Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol. 1979;111(1):63–71.
[52]
Devilly CI, Houghton JA. A study of genetic transformation in Gloeocapsa alpicola. J Gen Microbiol. 1977;98(1):277-80.
[53]
Singh DT, Nirmala K, Modi DR, Katiyar S, Singh HN. Genetic transfer of herbicide resistance gene(s) from Gloeocapsa spp. to Nostoc muscorum. Mol Gen Genet. 1987;208(3):436–8.
[54]
Astier C, Espardellier F. A genetic transfer system in a cyanophyte of the genus Aphanocapsa. C R Acad Sci Hebd Seances Acad Sci D. 1976;282(8):795-7.
[55]
Orkwiszewski KG, Kaney AR. Genetic transformation of the blue-green bacterium, Anacystis nidulans. Arch Mikrobiol. 1974;98(1):31-7.
[56]
Herdman M. Mutations arising during transformation in the blue-green alga Anacystis nidulans. Mol Gen Genet. 1973;120(4):369-78.
[57]
Herdman M, Carr NG. Recombination in Anacystis nidulans mediated by an extracellular DNA-RNA complex. Gen. Microbiol. 1971; 68(1):97-102.
[58]
Stevens SE, Porter RD. Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci U S A. 1980;77(10):6052-6.
[59]
Grigorieva G, Shestakov S. Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett. 1982;13(4):367–70.
[60]
Golden SS, Sherman LA. Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol. 1984;158(1):36-42.
[62]
Williams JG, Szalay AA. Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene. 1983;24(1):37-51.
[63]
Buzby JS, Porter RD, Stevens SE Jr. Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties. J Bacteriol. 1983;154(3):1446-50.
[64]
Grigorieva G., Shestakov S. Application of the genetic transformation method for taxonomic analysis of unicellular blue-green algae. 2nd Int. symp. on photosynthetic prokaryotes: Abstr. Dundee, 1976.K-P. 220-222.
[65]
Kuhlemeier CJ, Thomas AA, van der Ende A, van Leen RW, Borrias WE, van den Hondel CA, van Arkel GA. A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. Plasmid. 1983;10(2):156-63.
[66]
Shestakov S, Elanskaya I, Bibikova MV. Vectors for gene cloning in Synechocystis sp. 6803. V th Int. symp. on photosynthetic prokaryotes: Abstr. Grindelwaldl 1985:109.
[67]
Kolowsky KS, Williams JG, Szalay AA. Length of foreign DNA in chimeric plasmids determines the efficiency of its integration into the chromosome of the cyanobacterium Synechococcus R2. Gene. 1984;27(3):289-99.
[68]
Flores E, Wolk CP. Identification of facultatively heterotrophic, N2-fixing cyanobacteria able to receive plasmid vectors from Escherichia coli by conjugation. J Bacteriol. 1985;162(3):1339-41.
[69]
van den Hondel CA, Verbeek S, van der Ende A, Weisbeek PJ, Borrias WE, van Arkel GA. Introduction of transposon Tn901 into a plasmid of Anacystis nidulans: preparation for cloning in cyanobacteria. Proc Natl Acad Sci U S A. 1980;77(3):1570-4.
[70]
Tandeau de Marsac N, Borrias WE, Kuhlemeier CJ, Castets AM, van Arkel GA, van den Hondel CA. A new approach for molecular cloning in cyanobacteria: cloning of an Anacystis nidulans met gene using a Tn901-induced mutant. Gene. 1982;20(1):111-9.
[71]
Shestakov SV, Elanskaya IV, Bibikova MV. Vectors for integration cyanobacterium Synechocystis PCG6803. Dokl Akad Nauk SSSR. 1985; 282(1):176-9.
[72]
Borrias IT, van der Plas T, de Vrieze G, Weisbeek KP. Integrative recombination in Anacystis nidulans R2. VIth Int. symp. on photosynthetic prokaryotes: Abstr. Noodwijkerhout, 1988:16.
[73]
Kuhlemeier CJ, Borrias WE, van den Hondel CA, van Arkel GA. Vectors for cloning in cyanobacteria: construction and characterization of two recombinant plasmids capable of transformation of Escherichia coli K12 and Anacystis nidulans R2. Mol Gen Genet. 1981;184(2):249-54.
[74]
Sherman LA, van de Putte P. Construction of a hybrid plasmid capable of replication in the bacterium Escherichia coli and the cyanobacterium Anacystis nidulans. J Bacteriol. 1982;150(1):410-3.
[75]
Gendel S, Straus N, Pulleyblank D, Williams J. Shuttle cloning vectors for the cyanobacterium Anacystis nidulans. J Bacteriol. 1983;156(1):148-54.
[76]
Lau RH, Straus NA. Versatile shuttle cloning vectors for the unicellular cyanobacterium Anacystis nidulans R2 . FEMS Microbiol Lett. 1985;27(3):253–6.
[77]
Friedberg D, Seijffers J. A new hybrid plasmid capable of transforming Escherichia coli and Anacystis nidulans. Gene. 1983;22(2-3):267-75.
[78]
Chauvat F, Vries L, Ende A, Arkel GA. A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Molec Gen Genet. 1986;204(1):185–91.
[79]
Schmetterer G, Wolk CP, Elhai J. Expression of luciferases from Vibrio harveyi and Vibrio fischeri in filamentous cyanobacteria. J Bacteriol. 1986;167(1):411-4.
[80]
Golden JW, Wiest DR. Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of xisA gene. Science. 1988;242(4884):1421-3.
[81]
McFarlane GJB, Machray GC, Stewart WDP. A simplfied method for conjugal gene transfer into the filamentous cyanobacterium Anabaena sp. ATCC 27893. J Microbiol Methods. 1987;6(5):301–5.
[83]
Houmard J, Mazel D, Moguet C, Bryant DA, Tandeau de Marsac N. Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus 6301. Mol Gen Genet. 1986;205(3):404-10.
[84]
McCarn DF, Whitaker RA, Alam J, Vrba JM, Curtis SE. Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1988;170(8):3448-58.
[85]
Defrancesco N, Potts M. Cloning of nifHD from Nostoc commune UTEX 584 and of a flanking region homologous to part of the Azotobacter vinelandii nifU gene. J Bacteriol. 1988;170(7):3297-300.
[86]
Laudenbach DE, Trick CG, Straus NA. Cloning and characterization of an Anacystis nidulans R2 superoxide dismutase gene. Mol Gen Genet. 1989;216(2-3):455-61.
[87]
de Lorimier R, Bryant DA, Porter RD, Liu WY, Jay E, Stevens SE Jr. Genes for the alpha and beta subunits of phycocyanin. Proc Natl Acad Sci U S A. 1984;81(24):7946-50.
[88]
Lau RH, Alvarado-Urbina G, Lau PC. Phycocyanin alpha-subunit gene of Anacystis nidulans R2: cloning, nucleotide sequencing and expression in Escherichia coli. Gene. 1987;52(1):21-9.
[89]
Pilot TJ, Fox JL. Cloning and sequencing of the genes encoding the alpha and beta subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci U S A. 1984;81(22):6983-7.
[90]
Wallace TP, Stewart AC, Pappin D, Howe CJ. Gene sequence for the 9 kDa component of Photosystem II from the cyanobacterium Phormidium laminosum indicates similarities between cyanobacterial and other leader sequences. Mol Gen Genet. 1989;216(2-3):334-9.
[91]
Tandeau de Marsac N, Mazel D, Bryant DA, Houmard J. Molecular cloning and nucleotide sequence of a developmentally regulated gene from the cyanobacterium Calothrix PCC 7601: a gas vesicle protein gene. Nucleic Acids Res. 1985;13(20):7223-36.
[92]
Tomioka N, Shinozaki K, Sugiura M. Molecular cloning and characterization of ribosomal RNA genes from a blue-green alga, Anacystis nidulans. Mol Gen Genet. 1981;184(3):359–63.
[93]
Tomioka N, Sugiura M. Nucleotide sequence of the 16S-23S spacer region in the rrnA operon from a blue-green alga, Anacystis nidulans. Mol Gen Genet. 1984;193(3):427–30.
[94]
Tomioka N, Sugiura M. The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Molec Gen Genet. 1983;191(1):46–50.
[95]
Douglas SE, Doolittle WF. Nucleotide sequence of the 5 S rRNA gene and flanking regions in the cyanobacterium, Anacystis nidulans. FEBS Lett. 1984;166(2):307–10.
[96]
Douglas SE, Doolittle WF. Complete nucleotide sequence of the 23S rRNA gene of the Cyanobacterium, Anacystis nidulans. Nucleic Acids Res. 1984;12(7):3373-86.
[97]
Kumano M, Tomioka N, Sugiura M. The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga, Anacystis nidulans. Gene. 1983;24(2-3):219-25.
[98]
Kodaki T, Katagiri F, Asano M, Izui K, Katsuki H. Cloning of phosphoenolpyruvate carboxylase gene from a cyanobacterium, Anacystis nidulans, in Escherichia coli. J Biochem. 1985;97(2):533-9.
[99]
Porter RD, Buzby JS, Pilon A, Fields PI, Dubbs JM, Stevens SE Jr. Genes from the cyanobacterium Agmenellum quadruplicatum isolated by complementation: characterization and production of merodiploids. Gene. 1986;41(2-3):249-60.
[100]
Shestakov SV, Koksharova OA, Groshev VV, Elanskaya IV. Photosynthetic-defective mutants of the cyanobacterium Synechocystis PCC6803. Nauchnye Dokl Vyss Shkoly Biol Nauki. 1988; 1(1):75-80.
[101]
Chauvat F, Rouet P, Bottin H, Boussac A. Mutagenesis by random cloning of an Escherichia coli kanamycin resistance gene into the genome of the cyanobacterium Synechocystis PCC 6803: selection of mutants defective in photosynthesis. Mol Gen Genet. 1989;216(1):51-9.
[102]
Kuhlemeier CJ, Teeuwsen VJ, Janssen MJ, van Arkel GA. Cloning of a third nitrate reductase gene from the cyanobacterium Anacystis nidulans R2 using a shuttle cosmid library. Gene. 1984;31(1-3):109-16.
[103]
Dzelzkalns VA, Bogorad L. Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure. EMBO J. 1988;7(2):333-8.
[104]
Wolk CP, Cai Y, Cardemil L, Flores E, Hohn B, Murry M, Schmetterer G, Schrautemeier B, Wilson R. Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen. J Bacteriol. 1988;170(3):1239-44.
[105]
Reddy KJ, Bullerjahn GS, Sherman DM, Sherman LA. Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol. 1988;170(10):4466-76.
[106]
Streeck RE, Moritz KB, Beer K. Chromatin diminution in Ascaris suum: nucleotide sequence of the eliminated satellite DNA. Nucleic Acids Res. 1982;10(11):3495-502.
[107]
Honjo T, Kataoka T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc Natl Acad Sci U S A. 1978;75(5):2140-4.
[108]
Haber J. E. Mating-type genes of Saccharomyces cerevisiae. Mobile genetic elements. Ed. J. A. Shapiro. New York: Acad, press, 1983:559-619.
[109]
Haselkorn R, Golden JW, Lammers PJ, Mulligan ME. Developmental rearrangement of cyanobacterial nitrogen-fixation genes. Trends Genet. 1986;2:255–9.
[110]
Saville B, Straus N, Coleman JR. Contiguous organization of nitrogenase genes in a heterocystous cyanobacterium. Plant Physiol. 1987;85(1):26-9.
[111]
Meeks JC, Joseph CM, Haselkorn R. Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch Microbiol. 1988;150(1):61-71.
[112]
Kallas T, Coursin T, Rippka R. Different organization of nif genes in nonheterocystous and heterocystous cyanobacteria. Plant Mol Biol. 1985;5(5):321-9.
[113]
Haselkorn R. Heterocysts. Annu Rev Plant Physiol. 1978;29(1):319–44.
[114]
Golden JW, Robinson SJ, Haselkorn R. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature. 1985 Apr 4-10;314(6010):419-23.
[115]
Golden JW, Mulligan ME, Haselkorn R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature. 1987 Jun 11-17;327(6122):526-9.
[116]
Golden JW, Carrasco CD, Mulligan ME, Schneider GJ, Haselkorn R. Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J Bacteriol. 1988;170(11):5034-41.
[117]
Mulligan ME, Buikema WJ, Haselkorn R. Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium Anabaena sp. strain PCC 7120 and Rhizobium meliloti. J Bacteriol. 1988;170(9):4406-10.
[118]
Lammers PJ, Golden JW, Haselkorn R. Identification and sequence of a gene required for a developmentally regulated DNA excision in Anabaena. Cell. 1986;44(6):905-11.
[119]
Brusca JS, Hale MA, Carrasco CD, Golden JW. Excision of an 11-kilobase-pair DNA element from within the nifD gene in anabaena variabilis heterocysts. J Bacteriol. 1989;171(8):4138-45.
[120]
Herrero A, Wolk CP. Genetic mapping of the chromosome of the cyanobacterium, Anabaena variabilis. Proximity of the structural genes for nitrogenase and ribulose-bisphosphate carboxylase. J Biol Chem. 1986;261(17):7748-54.
[121]
Greener A, Hill CW. Identification of a novel genetic element in Escherichia coli K-12. J Bacteriol. 1980;144(1):312-21.
[122]
Brody H, Hill CW. Attachment site of the genetic element e14. J Bacteriol. 1988;170(5):2040-4.
[123]
van de Putte P, Plasterk R, Kuijpers A. A Mu gin complementing function and an invertible DNA region in Escherichia coli K-12 are situated on the genetic element e14. J Bacteriol. 1984;158(2):517-22.