Biopolym. Cell. 1990; 6(5):5-23.
Reviews
Peculiarties of expression regulation of the rplKAJL gene cluster
1Paton E. B.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

The review is focused on the evolutionary point of structure and functional organization of the rplKAJL gene cluster, characteristics of the L1 and L10 regulatory ribosomal proteins and structural features of the L10-L7/L12 mRNA leader sequence, which contains a L10 binding site. The principles and specific features of the translational control of rplKAJL genes expression are considered and the regulatory mechanism, providing for the excess synthesis of L7/L12 protein in vivo is proposed. Peculiarities of recombinant molecules, caused by elevation of the cloned rplKAJL gene dosage in the cell, are discussed as well.

References

[1] Jinks-Robertson S., Nomura M. Ribosomes and tRNA. Escherichia coli and Salmonella typhimurium molecular and cellular biology. New York: Amer. Soc. Microbiol, 1987:1358-1385.
[2] Lindahl L, Zengel JM. Ribosomal genes in Escherichia coli. Annu Rev Genet. 1986;20:297-326.
[3] Tittawella IP. Evidence for clustering of RNA polymerase and ribosomal protein genes in six species of Enterobacteria. Mol Gen Genet. 1984;195(1-2):215-8.
[4] Dabbs ER. Order of ribosomal protein genes in the Rif cluster of Bacillus subtilis is identical to that of Escherichia coli. J Bacteriol. 1984;159(2):770-2.
[5] Shimmin LC, Dennis PP. Characterization of the L11, L1, L10 and L12 equivalent ribosomal protein gene cluster of the halophilic archaebacterium Halobacterium cutirubrum. EMBO J. 1989;8(4):1225-35.
[6] Sor F, Nomura M. Cloning and DNA sequence determination of the L11 ribosomal protein operon of Serratia marcescens and Proteus vulgaris: translational feedback regulation of the Escherichia coli L11 operon by heterologous L1 proteins. Mol Gen Genet. 1987;210(1):52-9.
[7] Borodin AM, Danilkovich AV, Allikmets RL. Nucleotide sequence of the rplL gene coding for ribosomal protein L7/L12 of Pseudomonas putida. Bioorg Khim. 1989;15(4):560-1.
[8] Köpke AK, Baier G, Wittmann-Liebold B. An archaebacterial gene from Methanococcus vannielii encoding a protein homologous to the ribosomal protein L10 family. FEBS Lett. 1989;247(2):167-72.
[9] Strobel O, Köpke AK, Kamp RM, Böck A, Wittmann-Liebold B. Primary structure of the archaebacterial Methanococcus vannielii ribosomal protein L12. Amino acid sequence determination, oligonucleotide hybridization, and sequencing of the gene. J Biol Chem. 1988;263(14):6538-46.
[10] Ralling G, Linn T. Relative activities of the transcriptional regulatory sites in the rplKAJLrpoBC gene cluster of Escherichia coli. J Bacteriol. 1984;158(1):279-85.
[11] An G, Friesen JD. Characterization of promoter-cloning plasmids: analysis of operon structure in the rif region of Escherichia coli and isolation of an enhanced internal promoter mutant. J Bacteriol. 1980;144(3):904-16.
[12] Barry G, Squires CL, Squires C. Control features within the rplJL-rpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci U S A. 1979;76(10):4922-6.
[13] Downing WL, Dennis PP. Transcription products from the rplKAJL-rpoBC gene cluster. J Mol Biol. 1987;194(4):609-20.
[14] Morgan B., Hayward R. S. Sl analysis of PL10 activity in the E. coli rpoBC operon after aminoacyl-tRNA limitation or rifampicin treatment. Sequence specificity in transcription and translation. New York: Alan R. Liss, 1985:31-40.
[15] Nomura M, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75-117.
[16] Draper DE. How do proteins recognize specific RNA sites? New clues from autogenously regulated ribosomal proteins. Trends Biochem Sci. 1989;14(8):335-8.
[17] Thomas MS, Nomura M. Translational regulation of the L11 ribosomal protein operon of Escherichia coli: mutations that define the target site for repression by L1. Nucleic Acids Res. 1987;15(7):3085-96.
[18] Climie SC, Friesen JD. Feedback regulation of the rplJL-rpoBC ribosomal protein operon of Escherichia coli requires a region of mRNA secondary structure. J Mol Biol. 1987;198(3):371-81.
[19] Friesen JD, Tropak M, An G. Mutations in the rpIJ leader of Escherichia coli that abolish feedback regulation. Cell. 1983;32(2):361-9.
[20] Fiil NP, Friesen JD, Downing WL, Dennis PP. Post-transcriptional regulatory mutants in a ribosomal protein-RNA polymerase operon of E. coli. Cell. 1980;19(4):837-44.
[21] Christensen T, Johnsen M, Fiil NP, Friesen JD. RNA secondary structure and translation inhibition: analysis of mutants in the rplJ leader. EMBO J. 1984;3(7):1609-12.
[22] Friesen JD, An G, Fiil N. The lethal effect of a plasmid resulting from transcriptional readthrough of rplJ from the rplKA operon in Escherichia coli. Mol Gen Genet. 1983;189(2):275-81.
[23] Paton EB, Kroupskaya IV, Zhyvoloup AN. Unidirectional orientation of Escherichia coli rplKAJL-rpoBC operon fragments on a multicopy pUC plasmid. Biopolym Cell. 1989; 5(1):58-66.
[24] Paton EB, Krupskaia IV, Zhivolup AN. Determination of a minimal segment of E. coli ribosomal protein L10 retaining its regulatory function. Dokl Akad Nauk SSSR. 1989;309(2):493-6.
[25] Zolotukhin SB, Zhivolup AN, Krupskaia IV, Budmaska MI, Paton EB. The use of the multicopy plasmid pUC19 for assuring the constitutive expression of gene rplL in Escherichia coli. Tsitol Genet. 1989;23(6):22-4.
[26] Dennis PP, Fill NP. Transcriptional and post-transcriptional control of RNA polymerase and ribosomal protein genes cloned on composite ColE1 plasmids in the bacterium Escherichia coli. J Biol Chem. 1979;254(16):7540-7.
[27] Gourse RL, Thurlow DL, Gerbi SA, Zimmermann RA. Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc Natl Acad Sci U S A. 1981;78(5):2722-6.
[28] Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc Natl Acad Sci U S A. 1979;76(4):1697-701.
[29] Kroupskaya IV, Zhyvoloup AN, Paton EB. Construction of hybrid lacZ genes to study the E. coli rpljl operon genes expression mechanisms. Biopolym Cell. 1990; 6(2):91-100.
[30] Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133-48.
[31] Sor F, Bolotin-Fukuhara M, Nomura M. Mutational alterations of translational coupling in the L11 ribosomal protein operon of Escherichia coli. J Bacteriol. 1987;169(8):3495-507.
[32] Petersen C. Long-range translational coupling in the rplJL-rpoBC operon of Escherichia coli. J Mol Biol. 1989;206(2):323-32.
[33] Gold L., Stormo G. Translation initiation. Escherichia coli and Salmonella typhimurium molecular and cellular biology. New York: Amer. Soc. Microbiol., 1987; 2:1302-7.
[34] Inouye M. Antisense RNA: its functions and applications in gene regulation--a review. Gene. 1988;72(1-2):25-34.
[35] Cole ST, Honoré N. Transcription of the sulA-ompA region of Escherichia coli during the SOS response and the role of an antisense RNA molecule. Mol Microbiol. 1989;3(6):715-22.
[36] Jaurin B. A promoter probe vector (pJAC4) that utilizes the ampC beta-lactamase gene of Escherichia coli. Nucleic Acids Res. 1987;15(20):8567.
[37] Paton EB, Kroupskaya IV, Zhyvoloup AN. Particularities of cloning of Escherichia coli rpoBC-operon fragments in the pUC plasmids. Biopolym Cell. 1987; 3(6):307-12.
[38] Paton EB, Kroupskaya IV, Zhyvoloup AN. Orientational effects caused in the pUC plasmid by E. coli rplJL-rpoBC-operon fragments. Biopolym Cell. 1988; 4(3):163-7.
[39] Paton EB, Krupskaia IV, Zhivolup AN. Possibility of cloning the gene of the regulatory protein of rp1JL-operon of Escherichia coli on the multicopy plasmid pUC supported by convergent transcription induced by the promoter Plac of the vector. Mol Gen Mikrobiol Virusol. 1989;(3):39-43.
[40] Woodmaska MI, Paton EB. Cloning of Escherichia coli rpl JL-rpoBC-operon fragment in pBR322 and pHSG415 plasmids. Doklady Akad Nauk Ukr SSR. Ser B. 1987; (9):58-60.
[41] Hashimoto-Gotoh T, Franklin FC, Nordheim A, Timmis KN. Specific-purpose plasmid cloning vectors. I. Low copy number, temperature-sensitive, mobilization-defective pSC101-derived containment vectors. Gene. 1981;16(1-3):227-35.
[42] Sverdlov ED, Lisitsyn NA, Gur'ev SO, Smirnov IuV, Rostapshov VM. Genes encoding the beta-subunit of bacterial RNA-polymerases. I. Primary structure of the EcoRI-C fragment of the Salmonella typhimurium gene rpoB. Bioorg Khim. 1986;12(5):699-707.
[43] Paton EB, Zhyvoloup AN, Varanitsa LA. The presence of two strong promoters determines the orientation of a DNA fragment inserted into pUC19 plasmid. Biopolym. Cell. 1986; 2(4):217-9.
[44] Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20-78.
[45] Paton EB, Vudmaska MI, Sverdlov ED. Unidirectional orientation of the rpo B gene of E. coli cloned into filamentous M13mp8 and M13WB2348 phages. Bioorg Khim. 1984;10(11):1544-7.
[46] Zhyvoloup AN., Paton EB. High stability of a recombinant filamentous M13 phage with an inserted part of the Escherichia coli rpoBC operon. Biopolym. Cell. 1987; 3(4):221-3.
[47] Vudmaska MI, Zhivolup AN, Paton EB. Increase in stability of the recombinant phage M13 carrying Escherichia coli genes rpIJL by reducing expression of cloned genes. Genetika. 1990;26(3):557-9.