Biopolym. Cell. 1990; 6(4):32-42.
Reviews
Adaptation of cells to environmental factors. Characteristic of adaptive responses
1Solovyan V. T.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

The cellular adaptive response to various environmental factors has been analyzed. It is supposed that adaptive response irrespective of the nature of external factor is generated according to universal plan and characterized by surplus and nonspecificity of adaptive reactions.

References

[1] Aleksandrov VYa. Cells, macromolecules, and temperature. Leningrad, Nauka, 1975; 329 p.
[2] Aleksandrov VYa. Reactivity of cells and protein. Leningrad, Nauka, 1985; 317 p.
[3] Beck WT, Cirtain MC, Look AT, Ashmun RA. Reversal of Vinca alkaloid resistance but not multiple drug resistance in human leukemic cells by verapamil. Cancer Res. 1986;46(2):778-84.
[4] Mascarenhas J. P., Altschuler M. Responses to environmental heat stress in the plant embryo. Changes in eukaryotic gene expression in response to environmental stress . Eds B. G. Athinson, D. B. Walden. Orlando: Acad, press, 1986;315-326.
[5] Tomasovic SP, Rosenblatt PL, Johnston DA, Tang K, Lee PS. Heterogeneity in induced heat resistance and its relation to synthesis of stress proteins in rat tumor cell clones. Cancer Res. 1984;44(12 Pt 1):5850-6.
[6] Lieberman MW, Beach LR, Palmiter RD. Ultraviolet radiation-induced metallothionein-I gene activation is associated with extensive DNA demethylation. Cell. 1983;35(1):207-14.
[7] Dasgupta J, Bewley JD. Variations in protein synthesis in different regions of greening leaves of barley seedlings and effects of imposed water stress. J Exp Bot. 1984;35(10):1450-9.
[8] Hasegama PM, Bressan RA, Handa S, Handa AK.Cellular mechanisms of tolerance to water stress. Hort Science. 1984; 19(3:371-7.
[9] Derek Bewley J, LARSEN KM, Papp JET. Water-stress-induced changes in the pattern of protein synthesis in maize seedling mesocotyls: a comparison with the effects of heat shock. J Exp Bot. 1983;34(9):1126–33.
[10] Brown PC, Tlsty TD, Schimke RT. Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea. Mol Cell Biol. 1983;3(6):1097-107.
[11] Rosowsky A, Wright JE, Cucchi CA, Lippke JA, Tantravahi R, Ervin TJ, Frei E 3rd. Phenotypic heterogeneity in cultured human head and neck squamous cell carcinoma lines with low-level methotrexate resistance. Cancer Res. 1985;45(12 Pt 1):6205-12.
[12] Matthews PR, Stewart PR. Resistance heterogeneity in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 1984;22(3):161–6.
[13] Riordan JR, Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther. 1985;28(1):51-75.
[14] Mitchel RE, Morrison DP. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae. Transient changes in growth cycle distribution and recombinational ability. Radiat Res. 1982;92(1):182-7.
[15] Roberts PB. Growth in cadmium-containing medium induces resistance to heat in E. coli. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;45(1):27-31.
[16] Swaaij AC, Jacobsen E, Feenstra WJ. Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes of Solanum. Physiol Plant. 1985;64(2):230–6.
[17] Borst P. DNA amplification and multidrug resistance. Nature. 1984 Jun 14-20;309(5969):580.
[18] Liljenberg C, Kates M. Changes in lipid composition of oat root membranes as a function of water-deficit stress. Can J Biochem Cell Biol. 1985;63(2):77–84.
[19] Schimke RT. Gene amplification in cultured animal cells. Cell. 1984;37(3):705-13. Review.
[20] Li G. C., Laszlo A. Thermotolerance in mammalian cells: a possible role for heat shock proteins. Chang eukar. gene expression in response to envirolmental stress. Eds B. G. Atkinson, D. B. Walden. Orlando : Acad. press, 1985:227-262.
[21] Li GC. Heat shock proteins: role in thermotolerance, drug resistance, and relationship to DNA topoisomerases. NCI Monogr. 1987;(4):99-103.
[22] Schabel FM Jr, Skipper HE, Trader MW, Laster WR Jr, Griswold DP Jr, Corbett TH. Establishment of cross-resistance profiles for new agents. Cancer Treat Rep. 1983;67(10):905-22.
[23] Microbial Life in Extreme Environments. Ed. Kushner D. J. London, etc., Academic Press, 1978; 465 p.
[24] Nyberg D, Bishop P. High levels of phenotypic variability of metal and temperature tolerance in paramecium. Evolution. 1983;37(2):341-57.
[25] Laszlo A, Li GC. Heat-resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc Natl Acad Sci U S A. 1985;82(23):8029-33.
[26] Hong-Qi Z, Croes AF, Linskens HF. Qualitative changes in protein synthesis in germinating pollen of Lilium longiflorum after a heat shock. Plant Cell Environ. 1984;7(9):689–91.
[27] Henle KJ, Monson TP, Moss AJ, Nagle WA. Protection against thermal cell death in Chinese hamster ovary cells by glucose, galactose, or mannose. Cancer Res. 1984;44(12 Pt 1):5499-504.
[28] Craig EA, Jacobsen K. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell. 1984;38(3):841-9.
[29] Tebe T, Ito K, Yura T. Heat shock protein synthesis in Escherichia coli: isolation and characterization of mutants defective in heat shock induction. Ann Rept Inst Virus Res Kyoto Univ. 1982; 25:46-7.
[30] Karin M. Metallothioneins: Proteins in search of function. Cell. 1985;41(1):9–10.
[31] Tanguay RM. Genetic regulation during heat shock and function of heat-shock proteins: a review. Can J Biochem Cell Biol. 1983;61(6):387-94. Review.
[32] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol. 1980;31(1):149–90.
[33] Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC. Molecular biology of osmoregulation. Science. 1984;224(4653):1064-8.
[34] Nover L, Hellmund D, Neumann D, Scharf KD, Serfling E. The heat shock response of eukaryotic cells. Biol Zent Bl. 1984; 103(4):357-463.
[35] Guédon GF, Gilson GJ, Ebel JP, Befort NM, Remy PM. Lack of correlation between extensive accumulation of bisnucleoside polyphosphates and the heat-shock response in eukaryotic cells. J Biol Chem. 1986;261(35):16459-65.
[36] Iida H, Yahara I. A heat shock-resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth. J Cell Biol. 1984;99(4 Pt 1):1441-50.
[37] Ferrini U, Falcioni R, Delpino A, Cavaliere R, Zupi G, Natali PG. Heat-shock proteins produced by two human melanoma cell lines: absence of correlation with thermosensitivity. Int J Cancer. 1984;34(5):651-5.
[38] Xiao CM, Mascarenhas JP. High temperature-induced thermotolerance in pollen tubes of tradescantia and heat-shock proteins. Plant Physiol. 1985;78(4):887-90.
[39] Maniatis T, Goodbourn S, Fischer JA. Regulation of inducible and tissue-specific gene expression. Science. 1987;236(4806):1237-45. Review.
[40] Barham SS., Enger HD. Metallothionein response in not associated with cadmium sensitivity in some human tumor-derived cell lines. J Cell Biol. 1984; 99(4, pt. 2):454.
[41] Montoya-Zavala M, Hamlin JL. Similar 150-kilobase DNA sequences are amplified in independently derived methotrexate-resistant Chinese hamster cells. Mol Cell Biol. 1985;5(4):619-27.
[42] Wu BJ, Hurst HC, Jones NC, Morimoto RI. The E1A 13S product of adenovirus 5 activates transcription of the cellular human HSP70 gene. Mol Cell Biol. 1986;6(8):2994-9.
[43] Frei E 3rd, Rosowsky A, Wright JE, Cucchi CA, Lippke JA, Ervin TJ, Jolivet J, Haseltine WA. Development of methotrexate resistance in a human squamous cell carcinoma of the head and neck in culture. Proc Natl Acad Sci U S A. 1984;81(9):2873-7.
[44] Bates DA, Le Grimellec C, Bates JH, Loutfi A, Mackillop WJ. Effects of thermal adaptation at 40 degrees C on membrane viscosity and the sodium-potassium pump in Chinese hamster ovary cells. Cancer Res. 1985;45(10):4895-9.
[45] Umeki S, Maruyama H, Nozawa Y. Studies on thermal adaptation of Tetrahymena lipids. Alteration in fatty acid composition and its mechanism in the growth temperature shift-up. Biochim Biophys Acta. 1983; 752(1): 30-37.
[46] Cossins AR. The adjustment of membrane fluidity during thermal adaptation. J Therm Biol. 1983;8(4):433–4.
[47] Sheng M, Dougan ST, McFadden G, Greenberg ME. Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol Cell Biol. 1988;8(7):2787-96.
[48] Lee YJ, Dewey WC. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins. J Cell Physiol. 1987;132(1):41-8.
[49] Lindquist S. Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol. 1980;77(2):463-79.
[50] Baszczynski CL, Walden DB, Atkinson BG. Maize genome response to thermal shifts. Changes in eukaryotic gene expression in response to environmental stress . Eds B. G. Atkinson, D. B. Walden. Orlando: Acad, press, 1985:349-371.
[51] Stone H, Overnell J. Non-metallothionein cadmium binding proteins. Comp Biochem Physiol C. 1985;80(1):9-14.
[52] Chiu R, Imagawa M, Imbra RJ, Bockoven JR, Karin M. Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature. 1987 Oct 15-21;329(6140):648-51.
[53] Strom AR, FalkenbergP, Landfald B. Genetics of osmoregulation in Escherichia coli: Uptake and biosynthesis of organic osmolytes . FEMS Microbiol Lett. 1986;39(1-2):79–86.
[54] Ouedraogo M, Tremolieres A, Hubac C. Change in Fatty Acids Composition During Water stress in Cotton Plants. Relation With Drought Resistance Induced by Far Red Light. Z Pflanzenphysiol. 1984;114(3):239–45.
[55] Bertino JR, Carman MD, Weiner HL, Cashmore A, Moroson BA, Srimatkandada S, Schornagel JH, Medina WD, Dube SK. Gene amplification and altered enzymes as mechanisms for the development of drug resistance. Cancer Treat Rep. 1983;67(10):901-4.
[56] Konings AW, Ruifrok AC. Role of membrane lipids and membrane fluidity in thermosensitivity and thermotolerance of mammalian cells. Radiat Res. 1985;102(1):86-98.
[57] Hall BG. Yeast thermotolerance does not require protein synthesis. J Bacteriol. 1983;156(3):1363-5.
[58] Lee W, Mitchell P, Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell. 1987;49(6):741-52.
[59] Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell. 1987;49(6):729-39.
[60] Dorn A, Bollekens J, Staub A, Benoist C, Mathis D. A multiplicity of CCAAT box-binding proteins. Cell. 1987;50(6):863-72.
[61] Pfeifer K, Arcangioli B, Guarente L. Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell. 1987;49(1):9-18.
[62] Heikkila JJ, Papp JE, Schultz GA, Bewley JD. Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic Acid, and wounding. Plant Physiol. 1984;76(1):270-4.
[63] Pfeifer K, Prezant T, Guarente L. Yeast HAP1 activator binds to two upstream activation sites of different sequence. Cell. 1987;49(1):19-27.
[64] Durnam DM, Hoffman JS, Quaife CJ, Benditt EP, Chen HY, Brinster RL, Palmiter RD. Induction of mouse metallothionein-I mRNA by bacterial endotoxin is independent of metals and glucocorticoid hormones. Proc Natl Acad Sci U S A. 1984;81(4):1053-6.
[65] Richards RI, Heguy A, Karin M. Structural and functional analysis of the human metallothionein-IA gene: differential induction by metal ions and glucocorticoids. Cell. 1984;37(1):263-72.
[66] Durnam DM, Palmiter RD. Induction of metallothionein-I mRNA in cultured cells by heavy metals and iodoacetate: evidence for gratuitous inducers. Mol Cell Biol. 1984;4(3):484-91.
[67] Friedman RL, Stark GR. alpha-Interferon-induced transcription of HLA and metallothionein genes containing homologous upstream sequences. Nature. 1985 Apr 18-24;314(6012):637-9.
[68] Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC, Green MR. A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci U S A. 1987;84(23):8355-9.
[69] Andrews GK, Harding MA, Calvet JP, Adamson ED. The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene. Mol Cell Biol. 1987;7(10):3452-8.
[70] Barsoum J, Varshavsky A. Mitogenic hormones and tumor promoters greatly increase the incidence of colony-forming cells bearing amplified dihydrofolate reductase genes. Proc Natl Acad Sci U S A. 1983;80(17):5330-4.
[71] Chousterman S, Chelbi-Alix MK, Thang MN. 2',5'-Oligoadenylate synthetase expression is induced in response to heat shock. J Biol Chem. 1987;262(10):4806-11.
[72] Piper PW. How cells respond and adapt to heat stress through alterations in gene expression. Sci Prog. 1987;71(284 Pt 4):531-43.
[73] Hunt LA, Kelley KS. Nicotine-stimulated proteins in mouse cells are distinct from heat-shock proteins. Biochem J. 1984;224(1):87-92.
[74] LéJohn HB, Braithwaite CE. Heat and nutritional shock-induced proteins of the fungus Achlya are different and under independent transcriptional control. Can J Biochem Cell Biol. 1984;62(9):837–46.
[75] Maytin EV, Young DA. Separate glucocorticoid, heavy metal, and heat shock domains in thymic lymphocytes. J Biol Chem. 1983;258(20):12718-22.
[76] Maniak M, Nellen W. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol Cell Biol. 1988;8(1):153-9.
[77] Ten Hoopen HJG, Nobel PJ, Schaap A, Fuchs A, Roels JA. Effects of temperature on cadmium toxicity to the green algaScenedesmus acutus. I. Development of cadmium tolerance in batch cultures. Antonie Van Leeuwenhoek. 1985;51(3):344–6.
[78] Courgeon AM, Maisonhaute C, Best-Belpomme M. Heat shock proteins are induced by cadmium in Drosophila cells. Exp Cell Res. 1984;153(2):515-21.
[79] Taylor MW, Long T, Martinez-Valdez H, Downing J, Zeige G. Induction of gamma-interferon activity by elevated temperatures in human B-lymphoblastoid cell lines. Proc Natl Acad Sci U S A. 1984;81(13):4033-6.
[80] Mitchel RE, Morrison DP. Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae. Radiat Res. 1983;96(1):95-9.
[81] Verbenko VN, Akhmedov AT, Kalinin VL. Mutants of Escherichia coli K-12 with increased resistance to ionizing radiation. VI. Increased radioresistance and heat shock proteins. Genetika. 1986;22(11):2658-63.
[82] Shimada Y. Heat-shock induction of radiation resistance in primordial germ cells of the fish Oryzias latipes. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;48(2):189-96.
[83] Sherman MIu. The role of heat shock proteins in the osmoregulation of Escherichia coli. Mol Biol (Mosk). 1987;21(1):189-93.
[84] Thornalley PJ, Vasák M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta. 1985;827(1):36-44.
[85] Hanson AD, Nelsen CE, Pedersen AR, Everson EH. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance1. Crop Sci. 1979;19(4):489-93.
[86] Shevyakova NI. Metabolism and physiological role of proline in plants under conditions of water and salt stress. Fiziologiia rasteniy. 1983; 30(4):768-83.
[87] Giulotto E, Knights C, Stark GR. Hamster cells with increased rates of DNA amplification, a new phenotype. Cell. 1987;48(5):837-45.
[88] Csonka LN. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet. 1981;182(1):82-6.
[89] Bonham-Smith PC, Kapoor M, Bewley JD. Establishment of thermotolerance in maize by exposure to stresses other than a heat shock does not require heat shock protein synthesis. Plant Physiol. 1987;85(2):575-80.
[90] Varshavsky A. Diadenosine 5', 5"'-P1, P4-tetraphosphate: a pleiotropically acting alarmone? Cell. 1983;34(3):711-2.
[91] Moftah AE, Michel BE. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol. 1987;83(2):238-40.
[92] Krueger JH, Walker GC. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc Natl Acad Sci U S A. 1984;81(5):1499-503.
[93] Sciandra JJ, Subjeck JR, Hughes CS. Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc Natl Acad Sci U S A. 1984;81(15):4843-7.
[94] Martinsson T, Dahllöf B, Wettergren Y, Leffler H, Levan G. Pleiotropic drug resistance and gene amplification in a SEWA mouse tumor cell line. Complex relations revealed by drug uptake data, and lipid and protein analysis. Exp Cell Res. 1985;158(2):382-94.
[95] Strand DJ, McDonald JF. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 1985;13(12):4401-10.
[96] Rice GC, Hoy C, Schimke RT. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1986;83(16):5978-82.
[97] Spitz DR, Dewey WC, Li GC. Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J Cell Physiol. 1987;131(3):364-73.
[98] Minton KW, Karmin P, Hahn GM, Minton AP. Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci U S A. 1982;79(23):7107-11.
[99] Ericson MC, Alfinito SH. Proteins Produced during Salt Stress in Tobacco Cell Culture. Plant Physiol. 1984;74(3):506-9.
[100] Tanguay R. M. Intracellular localization and possible functions of heat shock proteins. Changes in eukaryotic gene expression in response to environmental stress. Eds B. G. Atkinson, D. B. Wilden. Orlando: Acad, press, 1985:91-1113.
[101] Kandpal RP, Appaji Rao N. Water stress induced alterations in ornithine aminotransferase of ragi (Eleusine coracana): Protection by proline against heat inactivation and denaturation by urea and guanidinium chloride. J Biosci. 1984;6(1):61–7.
[102] Aspinall D., Paley L. G. Proline accumulation: physiological aspects. The physiology and biochemistry of drought resistance in plant. Sydney: Acad, press. 1961:206-41.
[103] Herrlich P, Angel P, Rahmorsdorf H. et al. The stress response of human primary fibroblasts and its possible implications for carcinogenesis. J Cell Biochem. 1985; Suppl., N 9:17.
[104] NeÄ­fakh AA, Aleksandrova AIu. Decreased accumulation of fluorescent dyes in cells with multiple drug resistance. Dokl Akad Nauk SSSR. 1986;291(4):989-91.
[105] Imbra RJ, Karin M. Metallothionein gene expression is regulated by serum factors and activators of protein kinase C. Mol Cell Biol. 1987;7(4):1358-63.
[106] Robinson B. Molecular mechanism of multidrug resistance in tumor cell. Clin Physiol Bioohem. 1967; 5(1):140-51.
[107] de Bruijn MH, Van der Bliek AM, Biedler JL, Borst P. Differential amplification and disproportionate expression of five genes in three multidrug-resistant Chinese hamster lung cell lines. Mol Cell Biol. 1986;6(12):4717-22.
[108] Hahn P, Kapp LN, Painter RB. Establishment and characterization of two human cell lines with amplified dihydrofolate reductase genes. Exp Cell Res. 1987;168(1):89-94.
[109] VanBogelen RA, Acton MA, Neidhardt FC. Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev. 1987;1(6):525-31.
[110] Duncan DR, Widholm JM. Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiol. 1987;83(3):703-8.
[111] Burton V, Mitchell HK, Young P, Petersen NS. Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol. 1988;8(8):3550-2.
[112] Van Wijk R, Otto AM, Jimenez de Asua L. Hyperthermia can enhance the initiation of DNA synthesis stimulated by growth factors in swiss mouse 3T3 cells. Exp Cell Res. 1984;153(2):522-7.