Biopolym. Cell. 1990; 6(2):91-100.
Gene-Engineering Biotechnology
Construction of hybrid lacZ genes to study the E. coli rpljl operon genes expression mechanisms
- Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
Kiev, USSR
Abstract
Using the pNM481 plasmid vector 5'-terminal fragments of rplJ and rplL genes were fused in-frame to gene lacZ. Hybrid p-alactosidases activity, encoded by genes rplJ'— lacZ and rplL'-lacZ was compared. In contrast to rplL'-lacZ, extension of rplJ fused portion resulted in the decrease of the p-gal activity level. Different efficiency of translations seems to be the most probable mechanism, providing the excess synthesis of r-protein L7/L12 in vivo.
Full text: (PDF, in Russian)
References
[2]
Nomura M, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75-117.
[3]
Downing WL, Dennis PP. Transcription products from the rplKAJL-rpoBC gene cluster. J Mol Biol. 1987;194(4):609-20.
[4]
Morgan BA, Hayward RS. Sl analysis of PL10 activity in the E. coli rpoBC operon after aminoacyl-tRNA limitatin or rifampicin treatment. Sequence specifity in transcription and translation. New York: Alan R. Liss, Inc., 1985:31-40.
[5]
Jinks-Robertson S., Nomura M. Ribosomes and tRNA. Escherichia coli and Salmonella typhimurium cellular and molecular biology. New York: Amor. Soc. Microbiol, 1987. Vol. 2,:1358-1385.
[6]
An G, Friesen JD. Characterization of promoter-cloning plasmids: analysis of operon structure in the rif region of Escherichia coli and isolation of an enhanced internal promoter mutant. J Bacteriol. 1980;144(3):904-16.
[7]
Ralling G, Linn T. Relative activities of the transcriptional regulatory sites in the rplKAJLrpoBC gene cluster of Escherichia coli. J Bacteriol. 1984;158(1):279-85.
[8]
Minton NP. Improved plasmid vectors for the isolation of translational lac gene fusions. Gene. 1984;31(1-3):269-73.
[9]
Baughman G, Nomura M. Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell. 1983;34(3):979-88.
[10]
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103-19.
[11]
Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab. press, 1982 545 p.
[12]
Paton EB, Kroupskaya IV, Zhyvoloup AN. Unidirectional orientation of Escherichia coli rplKAJL-rpoBC operon fragments on a multicopy pUC plasmid. Biopolym Cell. 1989; 5(1):58-66.
[13]
Paton EB, Zhyvoloup AN, Varanitsa LA. The presence of two strong promoters determines the orientation of a DNA fragment inserted into pUC19 plasmid. Biopolym Cell. 1986; 2(4):217-9.
[14]
Collins J. Deletions, insertions and rearrangements affecting rpoB gene expression. Mol Gen Genet. 1979;173(2):217-20.
[15]
Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc Natl Acad Sci U S A. 1979;76(4):1697-701.
[16]
Miller JH. Experiments in molecular genetics. New York, Cold Spring Harbor lab. Publ., 1972; 466 p.
[17]
Paton EB, Kroupskaya IV, Zhyvoloup AN. Studies in the regulation of Escherichia coli rplL gene expression by the method of lacZ fusions in pNM481 plasmid. Biopolym Cell. 1989; 5(2):99-102.
[18]
Silhavy TJ, Casadaban MJ, Shuman HA, Beckwith JR. Conversion of beta-galactosidase to a membrane-bound state by gene fusion. Proc Natl Acad Sci U S A. 1976;73(10):3423-7.
[19]
Close TJ, Christmann JL, Rodriguez RL. M13 bacteriophage and pUC plasmids containing DNA inserts but still capable of beta-galactosidase alpha-complementation. Gene. 1983;23(2):131-6.
[20]
Looman AC, de Gruyter M, Vogelaar A, van Knippenberg PH. Effects of heterologous ribosomal binding sites on the transcription and translation of the lacZ gene of Escherichia coli. Gene. 1985;37(1-3):145-54.
[21]
Iborra F, Raynal A, Guerineau M. The promoter of the beta-glucosidase gene from Kluyveromyces fragilis contains sequences that act as upstream repressing sequences in Saccharomyces cerevisiae. Mol Gen Genet. 1988;213(1):150-4.
[22]
Newbury SF, Smith NH, Higgins CF. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell. 1987;51(6):1131-43.
[23]
Looman AC, Bodlaender J, de Gruyter M, Vogelaar A, van Knippenberg PH. Secondary structure as primary determinant of the efficiency of ribosomal binding sites in Escherichia coli. Nucleic Acids Res. 1986;14(13):5481-97.
[24]
Krupskaia IV, Paton EB, Zhivolup AN. Internal promoter of Escherichia coli rplJL operon exhibits high efficiency on recombinant pNM481 plasmid. Genetika. 1989;25(1):154-7.
[25]
Kuhlemeier C, Fluhr R, Chua N-H. Upstream sequences determine the difference in transcript abundance of pea rbcS genes. Mol Gen Genet. 1988;212(3):405-11.
[26]
Iborra F, Francingues MC, Guerineau M. Localization of the upstream regulatory sites of yeast iso2-cytochrome c gene. Mol Gen Genet. 1985;199(1):117-22.
[27]
Friesen JD, Tropak M, An G. Mutations in the rpIJ leader of Escherichia coli that abolish feedback regulation. Cell. 1983;32(2):361-9.
[28]
Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982;10(22):7055-74.
[29]
Sharp PM, Li WH. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 1986;14(19):7737-49.
[30]
Tinoco I Jr, Uhlenbeck OC, Levine MD. Estimation of secondary structure in ribonucleic acids. Nature. 1971;230(5293):362-7.